
KIP-485: Make topic optional when using through()
operations in DSL

Status
Motivation
Public Interfaces
Proposed Changes
Rejected Alternatives

Status
Current state: Moved to KIP-221: Enhance DSL with Connecting Topic Creation and Repartition Hint

Discussion thread: https://www.mail-archive.com/dev@kafka.apache.org/msg99085.html

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
When using DSL in Kafka Streams, data re-partition happens only when key-changing operation is followed by stateful operation. On the other hand, in
DSL, stateful computation can happen using operation as well. Problem with this approach is that, even if any upstream operation was key-transform()
changing before calling , no auto-repartition is triggered. If repartitioning is required, a call to should be performed before transform() through(String) transfor

. With the current implementation, burden of managing and creating the topic falls on user and introduces extra complexity of managing Kafka Streams m()
application.

Public Interfaces

 Unable to render Jira issues macro, execution

error.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-221%3A+Enhance+DSL+with+Connecting+Topic+Creation+and+Repartition+Hint
https://www.mail-archive.com/dev@kafka.apache.org/msg99085.html

public interface KStream<K, V> {
 ...

 /**
 * Materialize this stream to a topic and creates a new {@code KStream} from the topic using default
serializers,
 * deserializers, and producer's {@link DefaultPartitioner}.
 * Topic will be created and managed internally by Kafka Streams.
 * <p>
 * This is similar to calling {@link #to(String) #to(someTopicName)} and
 * {@link StreamsBuilder#stream(String) StreamsBuilder#stream(someTopicName)}.
 * Note that {@code through()} uses a hard coded {@link org.apache.kafka.streams.processor.
FailOnInvalidTimestamp
 * timestamp extractor} and does not allow to customize it, to ensure correct timestamp propagation.
 *
 * @return a {@code KStream} that contains the exact same (and potentially repartitioned) records as this
{@code KStream}
 */
 KStream<K, V> through();

 /**
 * Materialize this stream to a topic and creates a new {@code KStream} using the
 * {@link Produced} instance for configuration of the {@link Serde key serde}, {@link Serde value serde},
 * and {@link StreamPartitioner}.
 * Topic will be created and managed internally by Kafka Streams using generated processor name.
 * <p>
 * This is similar to calling {@link #to(String, Produced) to(someTopic, Produced.with(keySerde,
valueSerde)}
 * and {@link StreamsBuilder#stream(String, Consumed) StreamsBuilder#stream(someTopicName, Consumed.with
(keySerde, valueSerde))}.
 * Note that {@code through()} uses a hard coded {@link org.apache.kafka.streams.processor.
FailOnInvalidTimestamp
 * timestamp extractor} and does not allow to customize it, to ensure correct timestamp propagation.
 *
 * @param produced the options to use when producing to the topic
 * @return a {@code KStream} that contains the exact same (and potentially repartitioned) records as this
{@code KStream}
 */
 KStream<K, V> through(final Produced<K, V> produced);

 ...
}

Proposed Changes
Add two method overloads for through()

KStream#through() - with default serializers, deserializers and producer's DefaultPartitioner
KStream#through(final Produced<K, V> produced) - produced parameter will be used for configuration, in a similar way as for existing through

 method. Topic will be generated based processor name(String topic, final Produced<K, V> produced) through() .

Compatibility, Deprecation, and Migration Plan
Since we're adding two new method overloads without modifying existing API contract, there won't be any compatibility issues.

Rejected Alternatives
N/A

	KIP-485: Make topic optional when using through() operations in DSL

