
KIP-490: New metric to count offsets expired without being
consumed by a consumer group

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Logging on broker side

Status
Current state: Under Discussion

Discussion thread: here

JIRA:

Motivation
Messages stored in Kafka will expire and disappear based on retention time and size configuration. Consumers have no way to know they have silently
missed messages.

I propose to expose a JMX metric a message has been removed due to topic time/size retention settings, for a set of consumer groups specified on after
the topic configuration.

This could be implemented because the kafka brokers know the information needed for the task:

offset of the message that has been removed.
last offset consumed from a consumer group.

The compacted topics are out of scope, because when users chose compacted topics they are interested on the last value of they key, not on the
intermediary states.

Public Interfaces
A new property at should be created:topic level

Name Description Type Default Valid
Values

Server
default
property

Importance

non.consumed.
offsets.groups

comma separated list of consumer groups that will expose a metric with the
number of messages that expired before being consumed

List "" "" medium

A new JMX metric should be created to be exposed by the broker:

Metric / Attribute Name Description MBEAN NAME

non-consumed-total Number of messages expired without being consumed by a consumer group, per topic and partition

Proposed Changes
Currently the LogManager schedule the "kafka-delete-logs" thread, that will call the deleteLogs() method. Is possible to add into that method the metric to
expose the number of offsets non consumed by a list of consumer groups.

The pseudo code starts on the line 19:

https://lists.apache.org/thread.html/eadf30f1e484879194eb707eb72b91df4ef0852b0d5f958ee74b3dde@%3Cdev.kafka.apache.org%3E
https://kafka.apache.org/documentation/#topicconfigs

LogManager.scala deleteLogs()

 private def deleteLogs(): Unit = {
 var nextDelayMs = 0L
 try {
 def nextDeleteDelayMs: Long = {
 if (!logsToBeDeleted.isEmpty) {
 val (_, scheduleTimeMs) = logsToBeDeleted.peek()
 scheduleTimeMs + currentDefaultConfig.fileDeleteDelayMs - time.milliseconds()
 } else
 currentDefaultConfig.fileDeleteDelayMs
 }

 while ({nextDelayMs = nextDeleteDelayMs; nextDelayMs <= 0}) {
 val (removedLog, _) = logsToBeDeleted.take()
 if (removedLog != null) {
 try {
 removedLog.delete()
 info(s"Deleted log for partition ${removedLog.topicPartition} in ${removedLog.dir.
getAbsolutePath}.")

 //
 // KIP-490: log when consumer groups lose a message because offset has been deleted
 //

 val consumerGroupsSubscribed : Seq[String] = getConsumerGroups(removedLog.
topicPartition.topic());
 val groupsToNotify : Seq[String] = consumerGroupsSubscribed intersect groupsTobeNotify
// value get from topic config property 'retention.notify.groups'
 groupsToNotify.forEach({
 val lastCosumedOffsetGroup : Integer = getLastOffsetConsumed(_, removedLog.
topicPartition);
 if(lastCosumedOffsetGroup < removedLog.nextOffsetMetadata) {
 // increment and expose JMS metric non-consumed-total.
 }
 })

 } catch {
 case e: KafkaStorageException =>
 error(s"Exception while deleting $removedLog in dir ${removedLog.dir.getParent}.", e)
 }
 }
 }
 } catch {
 case e: Throwable =>
 error(s"Exception in kafka-delete-logs thread.", e)
 } finally {
 try {
 scheduler.schedule("kafka-delete-logs",
 deleteLogs _,
 delay = nextDelayMs,
 unit = TimeUnit.MILLISECONDS)
 } catch {
 case e: Throwable =>
 if (scheduler.isStarted) {
 // No errors should occur unless scheduler has been shutdown
 error(s"Failed to schedule next delete in kafka-delete-logs thread", e)
 }
 }
 }
 }

Compatibility, Deprecation, and Migration Plan
There is no impact on existing features.

Rejected Alternatives

Logging on broker side

To write logs on the broker to side to alert that messages have not been consumed has been rejected in favour of standard monitoring. Main reason is the
big amount of data that could be generated.

	KIP-490: New metric to count offsets expired without being consumed by a consumer group

