
KIP-498: Add client-side configuration for maximum
response size to protect against OOM

Status
Motivation
Proposed Changes

Incorrect failure mode
Limited scope
Illegitimate message rejection
Potential confusing

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
[*] Notes
Reference

Status
Current state: Under discussion

Discussion thread: Originally: . Follow-up: .msg-55658 here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
This KIP addresses a minor addition to the set of configuration properties of Kafka producers in order to make the client validates the size of a message
received from brokers (as denoted by the first four bytes of the response). The motivation is to prevent out-of-memory (OOM) errors when the size to be
allocated is abnormally high.

A typical scenario where this vulnerability to OOM is exhibited consists in a client sending a plaintext request to an SSL endpoint on a broker. When this
happens, the broker expects a as part of a new TLS handshake. It detects the request is invalid [] and sends back an to the client. The Client Hello * Alert
client reads the response starting with the first four bytes to infer the size of the reply. With TLS v2.2, this results in 352,518,912 bytes trying to be
allocated.

As reported in , this can happen when the producer property KAFKA-4090 security.protocol is not defined, because the client then defaults to the
plaintext transport layer implementation.

Public Interfaces
As part of the client-side configuration for producers and consumers, the property will be added.max.response.size

Note that this property has a different purpose from defined for consumers. The latter is used to control the size of batches to be fetch.max.bytes
received by a consumer, while the former applies to any message read from the socket. Also note will not put a limit the size of the fetch.max.bytes
first batch received by a consumer.

Proposed Changes
This new element of configuration was originally suggested on the discussion thread and mirrors what already exists server-side, i.e. the property socket.

 which was actually added in brokers for the very same reason. request.max.bytes -

The class which is used both client- and server-side already takes a maximum receive size org.apache.kafka.common.network.NetworkReceive
and throws a when a message indicates a higher value. Therefore the change org.apache.kafka.common.network.InvalidReceiveException
will mostly consists in propagating the value assigned to the property (or a sensible default) to the socket.response.max.bytes NetworkReceive
(and the classes in-between). More precisely, in the method , the value can org.apache.kafka.clients.producer.KafkaProducer#newSender
be provided to the constructor of the used later on by the client.org.apache.kafka.common.network.Selector

This proposed change was influenced by the following considerations:

 Unable to render Jira issues macro, execution

error.

https://www.mail-archive.com/dev@kafka.apache.org/msg55658.html
https://lists.apache.org/list.html?dev@kafka.apache.org:lte=10y:KIP-498
https://tools.ietf.org/html/rfc5246#section-7.4.1.2
#
https://tools.ietf.org/html/rfc5246#section-7.2.2
https://issues.apache.org/jira/browse/KAFKA-4090

It does not modify the message decoding logic on the client. That is, the client is not trying to identify a failed SSL handshake by forward-reading
a message. Indeed, doing so would affect the code path for messages, thus would be likely introducing a better-avoided overhead;all
It introduces minimal change in the codebase. Because this functionality is already implemented server-side and the client uses the same
network-level classes as the server, propagating the value of this new property is a minimal-impact, low-risk change. It is also fully transparent
from a server perspective.
It is intended to exhibit no change in behaviour for the existing clients, as long as the default value for the maximum allowed size is above that of
any valid message (note: need to check this).

This proposal appears to come with multiple drawbacks, some of which may be considered as red flags.

Incorrect failure mode

As was experimented and as can be seen as part of the integration tests, when an invalid size is detected and the exception InvalidReceiveException
is thrown, consumers and producers keeps retrying until the poll timeout expires or the maximum number of retries is reached. This is incorrect if we
consider the use case of protocol mismatch which motivated this change. Indeed, producers and consumers would need to fail fast as retries will only
prolong the time to remediation from users/administrators.

Limited scope

The proposed change cannot provide an definite guarantee against OOM in all scenarios - for instance, it will still manifest if the maximum size is set to
100 MB and the JVM is under memory pressure and have less than 100 MB of allocatable memory.

Illegitimate message rejection

Even worse: what if the property is incorrectly configured and legitimate messages not reaching the client?

Potential confusing

The name intends to mirror the existing from the producer's configuration properties. However, max.response.size max.request.size max.
 intends to check the size of producer records as provided by a client; while is to check the size directly request.size max.response.size

decoded from the network according to Kafka's binary protocol.
On the broker, the property is used to validate the size of messages received by the server. The new property socket.request.max.bytes
serves the same purpose, which introduces duplicated semantic, even if one property is characterised with the keyword "request" and the other
with "response", in both cases reflecting the perspective adopted from either a client or a server.

Compatibility, Deprecation, and Migration Plan
This feature preserves backward compatibility. A default maximal size should be chosen to avoid any change in behaviour when tactically in order
consuming large messages (legitimate responses should not be rejected). i.e. The same default value as socket.request.max.bytes,
or 104,857,600 bytes, could be used .

Rejected Alternatives
None.

[] Notes*
The server-side SSL engine detects the message is invalid as confirmed in server logs:

kafka-network-thread-0-ListenerName(SSL)-SSL-4, fatal error: 80: problem unwrapping net record
javax.net.ssl.SSLException: Unrecognized SSL message, plaintext connection?
kafka-network-thread-0-ListenerName(SSL)-SSL-4, SEND TLSv1.2 ALERT: fatal, description = internal_error
kafka-network-thread-0-ListenerName(SSL)-SSL-4, WRITE: TLSv1.2 Alert, length = 2

And sends back to the client the following sequence of bytes 15 03 03 00 02 02 50:

 __
Message bytes	0x15 0x0303 0x0002 0x02 0x50				
_______________	__				
Field	Record type	Version	Length	Handshake Type	Alert desc.
_______________	_____________	________________	___________	________________	____________________
Field value	ALERT	3.3 (TLS v1.2)	2 bytes	Server Hello	internal_error(80)
_______________	_____________	________________	___________	________________	____________________

The client tries to allocate 0x15030300 = 352,518,912 bytes which can result in OOM depending on the available heap size.

Reference

#

RFC 5246 - TLS v1.2

https://tools.ietf.org/html/rfc5246

	KIP-498: Add client-side configuration for maximum response size to protect against OOM

