
KIP-508: Make Suppression State Queriable

Status
Motivation
Proposed Changes
Public Interfaces
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

KTable#suppress(Suppressed, Materialized<K, V, KeyValueStore>)
KTable#suppress(Suppressed, String)

Status
Current state: Under Discussion

Discussion thread: thread

JIRA: KAFKA-8403

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
From 2.1, Kafka Streams provides a way to suppress the intermediate state of KTable (). The KIP-328: Ability to suppress updates for KTables
'KTable#suppress' operator introduced in KIP-328 controls what updates downstream table and stream operations will receive. With this feature, the
contents of the upstream table are disjointed into two groups, one for the intermediate state in the suppression buffer and the other for final states emitted
to the downstream table. The user can query the associated value to a specific key in the downstream table by querying the upstream table (KIP-67:

), since all of the key-value mappings in the downstream table are also stored in the upstream table.Queryable state for Kafka Streams

However, there is a limitation; if the user only wants to retrieve the associated value to a specified key (like ` `), it is okay. But ReadOnlyKeyValueStore#get
if what the user wants is getting an iterator to a suppressed view (like ` ` or ` `), we stuck in ReadOnlyKeyValueStore#range ReadOnlyKeyValueStore#all
trouble - since there is no way to identify which key is flushed out beforehand.

One available workaround is materializing the downstream table like `downstreamTable.filter(e -> true, Materialized.as("final-state"))`. However, this way is
cumbersome.

Proposed Changes
This KIP proposes to add an option to make suppression state queriable by adding a queriable flag to Suppressed.

Public Interfaces

public interface Suppressed<K> extends NamedOperation<Suppressed<K>> {

 ...

 /**
 * Make the suppression queryable.
 *
 * @return The same configuration with query enabled.
 */
 Suppressed<K> enableQuery();

 /**
 * @return Returns true iff the query is enabled.
 */
 boolean isQueryEnabled();

The user can query the suppressed view with , if is true.Suppressed#name Suppressed.isQueryEnabled

Calling without specifying name with is not allowed. For this case, Suppressed#enableQuery Suppressed#withName IllegalArgumentException
is thrown.

https://lists.apache.org/thread.html/r2bfc176c94843aadd420c66007794e167d05b77628661058f9c9e130%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-8403
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-328%3A+Ability+to+suppress+updates+for+KTables
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-67%3A+Queryable+state+for+Kafka+Streams
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-67%3A+Queryable+state+for+Kafka+Streams
https://kafka.apache.org/25/javadoc/org/apache/kafka/streams/state/ReadOnlyKeyValueStore.html#get-K-
https://kafka.apache.org/25/javadoc/org/apache/kafka/streams/state/ReadOnlyKeyValueStore.html#range-K-K-
https://kafka.apache.org/25/javadoc/org/apache/kafka/streams/state/ReadOnlyKeyValueStore.html#all--

Compatibility, Deprecation, and Migration Plan
None.

Rejected Alternatives

KTable#suppress(Suppressed, Materialized<K, V, KeyValueStore>)

This approach feels more consistent with existing APIs with variant (e.g., - Materialized KTable#filter(Predicate) KTable#filter
) at first appearance. However, this approach introduces two concepts of the name for the same operation: (Predicate, Materialized) Suppressed

 and . It is not feasible.#name Materialized#name

The current API for the variant is just a legacy of nameless operators before . In this case, we already have class Materialized KIP-307 Suppressed
and don't need to keep consistency with the old variant methods. So rejected.Materialized

KTable#suppress(Suppressed, String)

Another alternative is passing the state store name directly. This approach is neither consistent with the existing APIs nor has clear semantics, since it also
introduces two concepts for the same operation. So rejected.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-307%3A+Allow+to+define+custom+processor+names+with+KStreams+DSL

	KIP-508: Make Suppression State Queriable

