
1.
2.

KIP-517: Add consumer metrics to observe user poll
behavior

Status
Motivation
Example Usage
Public Interfaces
Proposed Changes

time-between-poll (avg/max)
last-poll-seconds-ago
poll-idle-ratio-avg

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: ACCEPTED

Discussion thread: here

Vote Thread: here

JIRA:

Motivation
The KafkaConsumer is a complex client that incorporates different configurations for detecting consumer failure to allow remaining consumers to pick up
the partitions of failed consumers. One such configuration is which is defined as:max.poll.interval.ms

max.
poll.
interv
al.ms

The maximum delay between invocations of poll() when using consumer group management. This places an upper bound on the amount of
time that the consumer can be idle before fetching more records. If poll() is not called before expiration of this timeout, then the consumer is
considered failed and the group will rebalance in order to reassign the partitions to another member.

int 3
0
0
0
00

[1
,..
.]

m
e
di
um

Timeout from this configuration typically happens when the application code to process the consumer's fetched records takes too long (longer than max.
). poll.interval.ms Hitting this timeout will cause the consumer to leave the group/rebalance (if it is a static member as described in not KIP-345:

). The consumer will end up rejoining the group if processing time was the only issue Introduce static membership protocol to reduce consumer rebalances
(and not a static member). This scenario is not ideal as rebalancing will disrupt processing and take additional time.

Additionally, sometimes a long processing time is unavoidable if:

Minimum processing time is long to begin with (ex. hit a database which takes 1 second per record minimum)
Processing involves talking to a downstream service which causes a spike in processing time (ex. intermittent load issues)sometimes

In such cases, the user must fine-tune the configurations to fit their use-case however detection of such events is difficult. The only way to definitely
identify this scenario is by searching application logs or the user must record their processing time on their own. The consumer will log an error when max.
poll.interval.ms is hit:

Member {} sending LeaveGroup request to coordinator {} due to consumer poll timeout has expired. This means the
time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically
implies that the poll loop is spending too much time processing messages. You can address this either by
increasing max.poll.interval.ms or by reducing the maximum size of batches returned in poll() with max.poll.
records.

An application owner has the ability to write code to measure processing time, but Kafka operators are out of luck as they must get the application owner
to implement such instrumentation. If the application owner does not provide this, then the Kafka operator does not have this data.

It would be beneficial to add metrics to track poll calls as it can be used by both Kafka application owners and operators to:

Easily identify if/when needs to be changed (and to what value)max.poll.interval.ms

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/a60864a7b23632f5dd7aef04c10a4c34d4a50963474b12fb74dd83d2@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/f02d41002e3b798059246c8335306be12695b01c3295c9a63f7a3a34@%3Cdev.kafka.apache.org%3E
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-345%3A+Introduce+static+membership+protocol+to+reduce+consumer+rebalances
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-345%3A+Introduce+static+membership+protocol+to+reduce+consumer+rebalances

View trends/patterns
Verify was hit using the max metric when debugging consumption issues (if logs are not available)max.poll.interval.ms
Configure alerts to notify when average/max time is too close to max.poll.interval.ms

Example Usage
An application owner reports that their consumers are seeing the timeout error log mentioned in the previous section. The max.poll.interval.ms
application owner may claim that their application code is fine and that the Kafka infrastructure is broken. The application does not have any
instrumentation measuring the processing time of their application which makes it difficult for the Kafka operator to prove otherwise and resolve the issue.

The Kafka operator can only propose to:

Increase max.poll.interval.ms
Decrease max.poll.records

It is not clear what values to use without instrumentation, and it ends up taking a few attempts/deployments to find a value that works.

The metric proposed in this KIP would help in this scenario as it would provide proof that took longer than the configured time-between-poll-max max.
. Additionally, it would give an actual value that can be used as a starting point for increasing .poll.interval.ms max.poll.interval.ms

It would also show long-term trends to identify if this incident was:

Unusual anomaly: Check health/performance of dependencies and consumer host
Processing time was always close to : Increase or decrease to avoid max.poll.interval.ms max.poll.interval.ms max.poll.records
hitting it due to variance

Public Interfaces
We will add the following metrics:

Metric Name Mbean Name Description

time-between-
poll-avg

kafka.consumer:type=consumer-metrics,
client-id=([-.\w]+)

The average delay between invocations of poll().

time-between-
poll-max

kafka.consumer:type=consumer-metrics,
client-id=([-.\w]+)

The max delay between invocations of poll().

last-poll-
seconds-ago

kafka.consumer:type=consumer-metrics,
client-id=([-.\w]+)

The number of seconds since the last poll() invocation.

poll-idle-
ratio-avg

kafka.consumer:type=consumer-metrics,
client-id=([-.\w]+)

The average fraction of time the consumer's poll() is idle as opposed to
waiting for the user code to process records.

Proposed Changes

time-between-poll (avg/max)

As we want this metric to measure the time that the user takes to call , we will store a in KafkaConsumer. We will calculate poll() long lastPollMs
the elapsed time (and update on every call to poll.lastPollMs)

On each call to , we will calculate the elapsed time since , record it in the which has & , and update .poll() lastPollMs Sensor Avg Max lastPollMs

last-poll-seconds-ago

The metric will measure the time since the user last called to provide more insight into how/when the user code calls last-poll-seconds-ago poll()
 .poll()

poll-idle-ratio-avg

There will be an additional metric that measures the idle time of the consumer in waiting for the user to process records returned from poll:

$\textrm{poll-idle-ratio-avg} = \frac{\textrm{time-inside-poll}}{\textrm{total-time}}$

This metric will have a value between 0.0 and 1.0.

A value approaching 1.0 means consumer is idle in poll (ex. waiting for records) while a value approaching 0.0 means the application is busy processing in
user code.

A low value (approaching 0.0) could indicate a issue or performance bottleneck in user code.potential

Compatibility, Deprecation, and Migration Plan
As this KIP simply adds new metrics, there is no issue regarding compatibility, deprecation, or migration.

Rejected Alternatives
None at the moment.

	KIP-517: Add consumer metrics to observe user poll behavior

