KIP-405: Kafka Tiered Storage

Authors Satish Duggana, Sriharsha Chintalapani, Ying Zheng, Suresh Srinivas

® Status
® Motivation
o Kafka as a long-term storage service
© Kafka local storage and operational complexity
o Kafka in cloud
® Solution - Tiered storage for Kafka
° Goals
© Non-Goals
® Proposed Changes
© High-level design
RemoteLogManager (RLM)
Local and Remote log offset constraints
Replica Manager
Follower Replication
= QOverview
= Follower fetch protocol in detail
= Follower fetch scenarios(including truncation cases)
® Scenario 1: new empty follower
® Scenario 2: out-of-sync follower catching up
® Scenario 3: Multiple hard failures (Scenario 2 of KIP-101)
® Scenario 4: unclean leader election including truncation.
® Scenario 5: log divergence in remote storage - unclean leader election
Follower to leader transition
Transactional support
Consumer Fetch Requests
Other APIs
" DeleteRecords
= ListOffsets
" LeaderAndlsr
= Stopreplica
n
u

[e]
[e]
[e]
[e]

O O O O

OffsetForLeaderEpoch
LogStartOffset
© RLM/RSM tasks and thread pools
= 1. Remote Log Manager (RLM) Thread Pool
® 2. Remote Storage Fetcher Thread Pool
© Remote Log Metadata State transitions
© RemoteLogMetadataManager implemented with an internal topic
= RLMM segment overhead:
Message Format
Configs
Committed offsets file format
Internal flat-file store format of remote log metadata
" Message Formatter for the internal topic
© Topic deletion lifecycle
® Protocol Changes
o ListOffsets
© Fetch
® Public Interfaces
© Configs
© Remote Storage Manager
© RemoteLogMetadataManager
New Metrics
Upgrade
Downgrade
Limitations
Integration and System tests
Feature Test
Performance Test Results
O Test case 1 (Normal case):
© Test case 2 (out-of-sync consumers catching up):
O Test case 3 (rebuild broker):
Future work
Alternatives considered
Meeting Notes
Other associated KIPs

Status

Current State: "Accepted"

Discussion Thread: here


https://mail-archives.apache.org/mod_mbox/kafka-dev/202102.mbox/browser

JIRA: .& Unable to render Jira issues macro, execution

error.

Motivation

Kafka is an important part of data infrastructure and is seeing significant adoption and growth. As the Kafka cluster size grows and more data is stored in
Kafka for a longer duration, several issues related to scalability, efficiency, and operations become important to address.

Kafka stores the messages in append-only log segments on local disks on Kafka brokers. The retention period for the log is based on “log.retention” that
can be set system-wide or per topic. Retention gives the guarantee to consumers that even if their application failed or was down for maintenance, it can
come back within the retention period to read from where it left off without losing any data.

The total storage required on a cluster is proportional to the number of topics/partitions, the rate of messages, and most importantly the retention period. A
Kafka broker typically has a large number of disks with a total storage capacity of 10s of TBs. The amount of data locally stored on a Kafka broker
presents many operational challenges.

Kafka as a long-term storage service

Kafka has grown in adoption to become the entry point of all of the data. It allows users to not only consume data in real-time but also gives the flexibility to
fetch older data based on retention policies. Given the simplicity of Kafka protocol and wide adoption of consumer API, allowing users to store and fetch
data with longer retention help make Kafka one true source of data.

Currently, Kafka is configured with a shorter retention period in days (typically 3 days) and data older than the retention period is copied using data
pipelines to a more scalable external storage for long-term use, such as HDFS. This results in data consumers having to build different versions of
applications to consume the data from different systems depending on the age of the data.

Kafka cluster storage is typically scaled by adding more broker nodes to the cluster. But this also adds needless memory and CPUs to the cluster making
overall storage cost less efficient compared to storing the older data in external storage. A larger cluster with more nodes also adds to the complexity of
deployment and increases the operational costs.

Kafka local storage and operational complexity

When a broker fails, the failed node is replaced by a new node. The new node must copy all the data that was on the failed broker from other replicas.
Similarly, when a new Kafka node is added to scale the cluster storage, cluster rebalancing assigns partitions to the new node which also requires copying
a lot of data. The time for recovery and rebalancing is proportional to the amount of data stored locally on a Kafka broker. In setups that have many Kafka
clusters running 100s of brokers, a node failure is a common occurrence, with a lot of time spent in recovery making operations difficult and time-
consuming.

Reducing the amount of data stored on each broker can reduce the recovery/rebalancing time. But it would also necessitate reducing the log retention
period impacting the time available for application maintenance and failure recovery.

Kafka in cloud

On-premise Kafka deployments use hardware SKUs with multiple high capacity disks to maximize the i/o throughput and to store the data for the retention
period. Equivalent SKUs with similar local storage options are either unavailable or they are very expensive in the cloud. There are more available options
for SKUs with lesser local storage capacity as Kafka broker nodes and they are more suitable in the cloud.

Solution - Tiered storage for Kafka

Kafka data is mostly consumed in a streaming fashion using tail reads. Tail reads leverage OS's page cache to serve the data instead of disk reads. Older
data is typically read from the disk for backfill or failure recovery purposes and is infrequent.

In the tiered storage approach, Kafka cluster is configured with two tiers of storage - local and remote. The local tier is the same as the current Kafka that
uses the local disks on the Kafka brokers to store the log segments. The new remote tier uses systems, such as HDFS or S3 to store the completed log
segments. Two separate retention periods are defined corresponding to each of the tiers. With remote tier enabled, the retention period for the local tier
can be significantly reduced from days to few hours. The retention period for remote tier can be much longer, days, or even months. When a log segment
is rolled on the local tier, it is copied to the remote tier along with the corresponding indexes. Latency sensitive applications perform tail reads and are
served from local tier leveraging the existing Kafka mechanism of efficiently using page cache to serve the data. Backfill and other applications recovering
from a failure that needs data older than what is in the local tier are served from the remote tier.

This solution allows scaling storage independent of memory and CPUs in a Kafka cluster enabling Kafka to be a long-term storage solution. This also
reduces the amount of data stored locally on Kafka brokers and hence the amount of data that needs to be copied during recovery and rebalancing. Log
segments that are available in the remote tier need not be restored on the broker or restored lazily and are served from the remote tier. With this,
increasing the retention period no longer requires scaling the Kafka cluster storage and the addition of new nodes. At the same time, the overall data
retention can still be much longer eliminating the need for separate data pipelines to copy the data from Kafka to external stores, as done currently in many
deployments.



Goals
Extend Kafka's storage beyond the local storage available on the Kafka cluster by retaining the older data in an external store, such as HDFS or S3 with

minimal impact on the internals of Kafka. Kafka behavior and operational complexity must not change for existing users that do not have tiered storage
feature configured.

Non-Goals

Tiered storage does not replace ETL pipelines and jobs. Existing ETL pipelines continue to consume data from Kafka as is, albeit with data in Kafka having
a much longer retention period.

It does not support compact topics with tiered storage. Topic created with the effective value for remote.storage.enable as true, can not change its
retention policy from delete to compact.

It does not support JBOD feature with tiered storage.

Proposed Changes

High-level design

Broker

ReplicaManager

——

: RemoteStorage e
: - Manager ‘ -| LogSegment
3 Store

~—
Log Remotelog
Manager Manager
| RemoteLogMetadata .| LogMetadata
Manager ] Store
[ R
-

:l Local disks

RemoteLogManager (RLM) is a new component which

® receives callback events for leadership changes and stop/delete events of topic partitions on a broker.
® delegates copy, read, and delete of topic partition segments to a pluggable storage manager(viz RemoteStorageManager) implementation and
maintains respective remote log segment metadata through RemoteLogMetadataManager.

"RemoteLogManager is an internal component and it is not a public API.
"RemoteStorageManager” is an interface to provide the lifecycle of remote log segments and indexes. More details about how we arrived at this interface

are discussed in the document. We will provide a simple implementation of RSM to get a better understanding of the APIs. HDFS and S3 implementation
are planned to be hosted in external repos and these will not be part of Apache Kafka repo. This is inline with the approach taken for Kafka connectors.


https://docs.google.com/document/d/1qfkBCWL1e7ZWkHU7brxKDBebq4ie9yK20XJnKbgAlew/edit?ts=5e208ec7#heading=h.y6ht8qd8hbh

"RemoteLogMetadataManager’ is an interface to provide the lifecycle of metadata about remote log segments with strongly consistent semantics. There is
a default implementation that uses an internal topic. Users can plugin their own implementation if they intend to use another system to store remote log
segment metadata.

RemoteLogManager (RLM)
RLM creates tasks for each leader or follower topic partition, which are explained in detail here.

® RLM Leader Task
o 1t checks for rolled over LogSegments (which have the last message offset less than last stable offset of that topic partition) and copies
them along with their offset/time/transaction/producer-snapshot indexes and leader epoch cache to the remote tier. It also serves the
fetch requests for older data from the remote tier. Local logs are not cleaned up till those segments are copied successfully to remote
even though their retention time/size is reached.

® RLM Follower Task
o It keeps track of the segments and index files on the remote tier by looking into RemoteLogMetdataManager. RLM follower can also
serve reading old data from the remote tier.

RLM maintains a bounded cache(possibly LRU) of the index files of remote log segments to avoid multiple index fetches from the remote storage. They
are stored in a directory ‘remote-log-index-cache™ under log dir. These indexes can be used in the same way as local segment indexes are used. User can
configure ‘remote.log.index.file.cache.total.size.mb" to set the total size that can be used for these index files.

The earlier approach consists of pulling the remote log segment metadata from remote log storage APIs as mentioned in the earlier RemoteStorageManag
er_Old section. This approach worked fine for storages like HDFS. One of the problems of relying on remote storage to maintain metadata is that tiered-
storage needs to be strongly consistent, with an impact not only on the metadata itself (e.g. LIST in S3) but also on the segment data (e.g. GET after a
DELETE in S3). Also, the cost (and to a lesser extent performance) of maintaining metadata in remote storage needs to be factored in. In the case of S3,
frequent LIST APIs incur huge costs.

So, remote storage is separated from the remote log metadata store and introduced RemoteStorageManager and RemoteLogMetadataManager
respectively. You can see the discussion details in the doc located here.

Local and Remote log offset constraints

Below are the leader topic partition's log offsets

z y X
Local Log Remote Log
R R
y X
Lx = Local log start offset L, =Local log end offset Ly = Last stable offset(LSO)

Ry = Remote log end offset R, =Remote log start offset

L, >= Ly >= Lx and Ly >= R’ >= R,

Replica Manager
If RLM is configured, ReplicaManager will call RLM to assign or remove topic-partitions.

If the broker changes its state from Leader to Follower for a topic-partition and RLM is in the process of copying the segment, it will finish the copy before it
relinquishes the copy for topic-partition. This might leave duplicated segments but these will be cleaned up when these segments are ready for deletion
based on remote retention configs.

Follower Replication

Overview

Currently, followers replicate the data from the leader, and try to catch up until the log-end-offset of the leader to become in-sync replicas. Followers
maintain the same log segments lineage as the leader by doing the truncation if required.


https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage#KIP-405:KafkaTieredStorage-RemoteStorageManager_Old
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage#KIP-405:KafkaTieredStorage-RemoteStorageManager_Old
https://docs.google.com/document/d/1qfkBCWL1e7ZWkHU7brxKDBebq4ie9yK20XJnKbgAlew/edit?ts=5e208ec7

With tiered storage, followers need to maintain the same log segments lineage as the leader. Followers replicate the data that is only available on the
leader's local storage. But they need to build the state like leader epoch cache and producer id snapshots for the remote segments and they also need to
do truncation if required.

The below diagram gives a brief overview of the interaction between leader, follower, and remote log and metadata storage. It will be described more in
detail in the next section.

RemaotelLogSegmentMetadata
Remote Log Storage Topic

M

Log segments

and auxiliary
state
1 2 5 4
Leader 3 Follower

. Leader copies log segments with the auxiliary state(includes leader epoch cache and producer-id snapshots) to remote storage.
. Leader publishes remote log segment metadata about the copied remote log segment,

. Follower tries to fetch the messages from the leader and follows the protocol mentioned in detail in the next section.

. Follower waits till it catches up consuming the required remote log segment metadata.

. Follower fetches the respective remote log segment metadata to build auxiliary state.

O wWNPE

Follower fetch protocol in detail

Leader epoch was introduced for handling possible log divergence among replicas in a few leadership change scenarios mentioned in KIP-101 and KIP-
279. This is a monotonically increasing number for partition in a single leadership phase and it is stored in each message batch.

Leader epoch sequence file is maintained for each partition by each broker, and all in-sync replicas are guaranteed to have the same leader epoch history
and the same log data.

Leader epoch is used to

® decide log truncation (KIP-101),
® keep consistency across replicas (KIP-279), and
® reset consumer offsets after truncation (KIP-320).

Incase of remote storage also, we should maintain log lineage and leader epochs like it is done with local storage.

Currently, followers build the auxiliary state (i.e. leader epoch sequence, producer snapshot state) when they fetch the messages from the leader by
reading the message batches. Incase of tiered storage, follower finds the offset and leader epoch up to which the auxiliary state needs to be built from the
leader. After which, followers start fetching the data from the leader starting from that offset. That offset can be local-log-start-offset or last-tiered-offset.
Local-log-start-offset is the log start offset of the local storage. Last-tiered-offset is the offset up to which the segments are copied to remote storage. We
will describe pros and cons of choosing these segments.

last-tiered-offset

® The advantage of this option is that followers can catch up quickly with the leader as the segments that are required to be fetched by followers are
the segments that are not yet moved to remote storage.

® One disadvantage with this approach is that followers may have a few local segments than the leader. When that follower becomes a leader then
the existing followers will truncate their logs to the leader's local log-start-offset.


https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+than+High+Watermark+for+Truncation#KIP101AlterReplicationProtocoltouseLeaderEpochratherthanHighWatermarkforTruncation-LeaderEpoch
https://cwiki.apache.org/confluence/display/KAFKA/KIP-279%3A+Fix+log+divergence+between+leader+and+follower+after+fast+leader+fail+over
https://cwiki.apache.org/confluence/display/KAFKA/KIP-279%3A+Fix+log+divergence+between+leader+and+follower+after+fast+leader+fail+over
https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+than+High+Watermark+for+Truncation#KIP101AlterReplicationProtocoltouseLeaderEpochratherthanHighWatermarkforTruncation-LeaderEpoch
https://cwiki.apache.org/confluence/display/KAFKA/KIP-279%3A+Fix+log+divergence+between+leader+and+follower+after+fast+leader+fail+over
https://cwiki.apache.org/confluence/display/KAFKA/KIP-320%3A+Allow+fetchers+to+detect+and+handle+log+truncation

local-log-start-offset

® This will honour local log retention in case of leader switches.

* |t will take longer for a lagging follower to become an insync replica by catching up with the leader. One of those cases can be a new follower
replica added for a partition need to start fetching from local log start offset to become an insync follower. So, this may take longer based on the
local log segments available on the leader.

We prefer to go with the local log start offset as the offset from which follower starts to replicate the local log segments for the reasons mentioned above.
With tiered storage, the leader only returns the data that is still in the leader's local storage. Log segments that exist only on remote storage are not
replicated to followers as those are already present in remote storage. Followers fetch offsets and truncate their local logs if needed with the current
mechanism based on the leader's local-log-start-offset. This is described with several cases in detail in the next section.

When a follower fetches data for an offset which is no longer available in the leader's local storage, the leader will send a new error code "OFFSET_MOVE
D_TO_TIERED_STORAGE". After that, follower finds the local-log-start-offset and respective leader epoch from the leader. Followers need to build the
auxiliary state of the remote log segments till that offset, which are leader epochs and producer-snapshot-ids. This can be done in two ways.

® introduce a new protocol (or API) to fetch this state from the leader partition.
® fetch this state from the remote storage.

Latter is preferred here as remote storage can have this state and it is simpler without introducing a new protocol with the leader.
This involves two steps in getting the required state of the respective log segment for the requested fetch offset.

® it should fetch the respective remote log segment metadata and
® it should fetch respective state like leader epochs from remote storage for the respective remote log segment metadata.

When shipping a log segment to remote storage, the leader broker will store the leader epoch sequence and producer id snapshot up to the end of the

segment into the same remote directory (or the same remote object key prefix). These data can be used by the followers to rebuild the leader epoch
sequences and producer id snapshots when needed.

Follower Replica state transitions

Fetching Truncating

Building
Remotelog
AuxState


https://docs.google.com/document/d/18tnobSas3mKFZFr8oRguZoj_tkD_sGzivuLRlMloEMs/edit?ts=5ef13aa2#heading=h.ums0h8giy3c

So, we need to add a respective ReplicaState for building auxiliary state which can be called "BuildingRemoteLogAuxState’. Fetcher thread processes this
state also in every run as it does for Fetching and Truncating states.

When a follower tries to fetch an offset that is no longer in the leader's local storage, the leader returns OffsetMovedToRemoteStorage error. Upon
receiving this error, the follower will

1) Retrieve the Earliest Local Offset (ELO) and the corresponding leader epoch (ELO-LE) from the leader with a ListOffset request (timestamp = -4)
2) Truncate local log and local auxiliary state

3) Transfer from Fetching state to BuildingRemoteLogAux state

In BuildingRemoteLogAux state, the follower will

Option 1:

Repeatedly call the FetchEarliestOffsetFromLeader API from ELO-LE to the earliest leader epoch that the leader knows, and build local leader epoch
cache accordingly. This option may not be very efficient when there were a lot of leadership changes. The advantage of this option is that the entire
process is in Kafka, even when the remote storage is temporarily unavailable, the followers can still catch up and join ISR.

Option 2:

1) Wait for RLMM to receive remote segment information until there is a remote segment that contains the ELO-LE.

2) Fetch the leader epoch sequence and producer snapshot from remote storage (using remote storage fetcher thread pool)

3) Build the local leader epoch cache by cutting the leader epoch sequence received from remote storage to [LSO, ELO]. (LSO = log start offset)

After building the local leader epoch cache, the follower transfers back to Fetching state, and continues fetching from ELO. We preferred to go with the
latter option as it can get the required state from remote storage.

Let us discuss a few cases that followers can encounter while it tries to replicate from the leader and build the auxiliary state from remote storage.
OMTS : OffsetMovedToTieredStorage

ELO : Earliest-Local-Offset

LE-x : Leader Epoch X,

HW : High Watermark

seg-a-b: a remote segment with first-offset = a and last-offset = b

LE-x, y : A leader epoch sequence entry indicates leader-epoch x starts from offset y

Follower fetch scenarios(including truncation cases)

Scenario 1: new empty follower

A broker is added to the cluster and assigned as a replica for a partition. This broker will not have any local data as it has just become a follower for the
first time. It will try to fetch the offset O from the leader. If that offset does not exist on the leader, the follower will receive the
OFFSET_MOVED_TO_TIERED_STORAGE error. The follower will then send a ListOffset request with timestamp = EARLIEST_LOCAL_TIMESTAMP,
and will receive the offset of the leader's earliest local message.

The follower will need to build the state until that offset before it starts to fetch from the leader's local storage.

step 1:

Fetch remote segment info, and rebuild leader epoch sequence.

Broker A (Leader) @ Broker B (Follower) Remote Storage RL metadata storage



3: msg 3 LE-1 1. Fetch LE-1, O seg-0-2, uuid-1 seg-0-2, uuid-1

4: msg 4 LE-1 2. Receives OMTS log: segment epochs
5: msg 5 LE-2 3. Receives ELO 3, LE-1 0:msgOLE-0 | LE-0,0
6: msg 6 LE-2 4. Fetch remote segment info and build local leader epoch sequence until ELO | 1: msg 1 LE-O
7: msg 7 LE-3 (HW) 2: msg 2 LE-O seg-3-5, uuid-2
leader_epochs epochs: segment epochs
leader_epochs LE-0, 0 LE-0,0 LE-1,3
LE-O, O LE-1,3 LE-2,5
LE-1, 3 seg 3-5, uuid-2
LE-2,5 log:
LE-3,7 3:msg 3 LE-1
4:msg 4 LE-1
5:msg 5 LE-2
epochs:
LE-0,0
LE-1,3
LE-2,5
step 2:

continue fetching from the leader

Broker A (Leader) ' Broker B (Follower) Remote Storage RL metadata storage

3: msg 3 LE-1 Fetch from ELO to HW | seg-0-2, uuid-1 seg-0-2, uuid-1
4: msg 4 LE-1 3: msg 3 LE-1 log: segment epochs
5: msg 5 LE-2 4:msg 4 LE-1 0:msgOLE-0 |LE-0,0
6: msg 6 LE-2 5:msg 5 LE-2 1:msg 1 LE-O
7:msg 7 LE-3 (HW)  6: msg 6 LE-2 2: msg 2 LE-O seg-3-5, uuid-2
7:msg 7 LE-3 (HW) epochs: segment epochs
leader_epochs leader_epochs LE-0, 0 LE-1,3
LE-0, 0 LE-0, 0 LE-2,5
LE-1,3 LE-1, 3 seg 3-5, uuid-2
LE-2,5 LE-2,5 log:
LE-3,7 LE-3,7 3: msg 3 LE-1
4:msg 4 LE-1
5:msg 5 LE-2
epochs:
LE-0, 0
LE-1, 3
LE-2,5

Scenario 2: out-of-sync follower catching up

A follower is trying to catch up, and the segment has moved to tiered storage. It involves two cases like whether the local segment exists or not.
2.1 Local segment exists and the latest local offset is larger than the earliest-local-offset of the leader

In this case, followers fetch like earlier as the local segments exist. There will not be any changes for this case.

2.2 Local segment does not exist, or the latest local offset is smaller than ELO of the leader



In this case, local segments might have already been deleted because of the local retention settings, or the follower has been offline for a very long time.
The follower receives OFFSET_MOVED_TO_TIERED_STORAGE error while trying to fetch the desired offset. The follower has to truncate all the local log

segments because we know the data already expired on the leader.

step 1:

An out-of-sync follower (broker B) has local data up to offset 3

Broker A
(Leader)

0: msg 0 LE-
0

1:msg 1 LE-
2:msg 2 LE-
3: msg 3 LE-
4: msg 4 LE-
5:msg 5 LE-
6: msg 6 LE-
7:msg 7 LE-
8: msg 8 LE-

3

9: msg 9 LE-
3 (HW)

leader_epoc
hs

LE-0,0
LE-1,3
LE-2,5

LE-3,7

step 2:

Broker B (Follower)

0: msg 0 LE-0

=

:msg 1LE-O
2: msg 2 LE-O
3:msg 3 LE-1
leader_epochs
LE-0, 0

LE-1,3

1. Because the latest leader epoch in the local storage (LE-1) does not equal the current leader epoch (LE-3). The follower
starts from the Truncating state.

2. fetchLeaderEpochEndOffsets(LE-1) returns 5, which is larger than the latest local offset. With the existing truncation

logic, the local log is not truncated and it moves to Fetching state.

Local segments on the leader are deleted because of retention, and then the follower starts trying to catch up with the leader.

Broker A (Leader)

Broker B (Follower)

Remote Storage

Remote
Storage

seg-0-2,
uuid-1

log:

0: msg 0
LE-0

1:msg 1
LE-O

2: msg 2
LE-0

epochs:

LE-0,0

seg 3-5,
uuid-2

log:

3:msg 3
LE-1

4: msg 4
LE-1

5:msg 5
LE-2

epochs:
LE-0, 0
LE-1, 3

LE-2,5

RL metadata
storage

seg-0-2, uuid-
1

segment
epochs

LE-0,0

seg-3-5, uuid-
2

segment
epochs

LE-1,3

LE-2,5

RL metadata storage



9: msg 9 LE-3 0: msg O LE-O seg-0-2, uuid-1 seg-0-2, uuid-1

10: msg 10 LE-3 1: msg 1 LE-O log: segment epochs
11: msg 11 LE-3 (HW) 2: msg 2 LE-0 0: msg 0 LE-0 LE-0,0
3:msg 3 LE-1 1: msg 1 LE-O
leader_epochs 2: msg 2 LE-O seg-3-5, uuid-2
[segments till offset 8 were deleted]
LE-0, 0 epochs: segment epochs
LE-1,3 LE-0, 0 LE-1, 3
leader_epochs LE-2,5
LE-0, 0 <Fetch State> seg 3-5, uuid-2
LE-1,3 1. Fetch from leader LE-1, 4 log: seg-6-8, uuid-3
LE-2,5 2. Receives OMTS, truncate local segments. 3:msg 3 LE-1 segment epochs
LE-3,7 3. Fetch ELO, Receives ELO 9, LE-3 and moves to BuildingRemoteLogAux state = 4: msg 4 LE-1 LE-2,5
5:msg 5 LE-2 LE-3,7
epochs:
LE-0,0
LE-1,3
LE-2,5

Seg 6-8, uuid-3, LE-3

log:

6: msg 6 LE-2
7:msg 7 LE-3

8: msg 8 LE-3
epochs:

LE-0,0

LE-1,3

LE-2,5

LE-3,7

step 3:
After deleting the local data, this case becomes the same as scenario 1.

Broker A (Leader) Broker B (Follower) Remote Storage RL metadata
storage



9: msg 9 LE-3
10: msg 10 LE-3

11: msg 11 LE-3 (HW)

[segments till offset 8 were
deleted]

leader_epochs
LE-0, 0
LE-1, 3
LE-2,5

LE-3,7

1. follower rebuilds leader epoch sequence up to LE-3 using remote segment metadata and

remote data
leader_epochs
LE-0, 0
LE-1,3
LE-2,5

LE-3,7

2. follower continue fetching from the leader from ELO (9, LE-3)
9: msg 9 LE-3
10: msg 10 LE-3

11: msg 11 LE-3 (HW)

Scenario 3: Multiple hard failures (Scenario 2 of KIP-101)

Step 1:

Broker A (Leader) ' Broker B

Remote Storage = RL metadata storage

0: msg O LE-O 0: msg O LE-O seg-0-1: seg-0-1, uuid-1

1: msg 1 LE-O 1: msg 1 LE-O log: segment epochs

2:msg 2 LE-0 (HW) | 2: msg 2 LE-0 (HW) =~ 0: msg O LE-0 | LE-0, 0

leader_epochs leader_epochs 1: msg 1 LE-O
LE-0, 0 LE-0, O epoch:
LE-0, 0

Broker A has shipped its 1st log segment to remote storage.

Step 2:

seg-0-2, uuid-1
log:
0: msg 0 LE-0
1:msg 1 LE-O
2: msg 2 LE-O
epochs:

LE-0,0

seg 3-5, uuid-2
log:
3: msg 3 LE-1
4:msg 4 LE-1
5:msg 5 LE-2
epochs:
LE-0, 0
LE-1,3

LE-2,5

Seg 6-8, uuid-3,
LE-3

log:

6: msg 6 LE-2
7:msg 7 LE-3
8: msg 8 LE-3
epochs:

LE-0, 0

LE-1, 3
LE-2,5

LE-3,7

seg-0-2, uuid-1
segment epochs

LE-0,0

seg-3-5, uuid-2
segment epochs
LE-1,3

LE-2,5

seg-6-8, uuid-3
segment epochs
LE-2,5

LE-3,7

Both broker A and broker B crashed at the same time. Some messages (msg 1 and msg 2) on broker B were not synced to the hard disk, and were lost.

In this case, it is acceptable to lose data, but we have to keep the same behaviour as described in the KIP-101.

Broker A (stopped) Broker B (Leader) = Remote Storage = RL metadata storage



0: msg O LE-O 0: msg O LE-O (HW) ' seg-0-1: seg-0-1, uuid-1

1: msg 1 LE-O 1: msg 3 LE-1 log: segment epochs
2: msg 2 LE-0 (HW) | leader_epochs 0: msg O LE-O LE-0,0
leader_epochs LE-0, 0 1:msg 1 LE-O
LE-0, 0 LE-1,1 epoch:

LE-0, 0

After restart, B losses message 1 and 2. B becomes the new leader, and receives a new message 3 (LE-1, offset 1).

(Note: This may not be technically an unclean-leader-election, because B may have not been removed from ISR because both of the 2 brokers crashed at
the same time.)

Step 3:

After restart, broker A truncates offset 1 and 2 (LE-0), and receives the new message (LE-1, offset 1).

Broker A (follower) Broker B (Leader) = Remote Storage RL metadata storage

0: msg O LE-0 0: msg 0 LE-0 seg-0-1: seg-0-1, uuid-1
1: msg 1 LE-O 1: msg 3 LE-1 (HW) log: segment epochs
2:msg 2 LE-O leader_epochs 0: msg O LE-O LE-0, 0
1: msg 3 LE-1 (HW) | LE-0, 0 1:msg 1 LE-O
leader_epochs LE-1,1 epoch:
LE-0, 0 LE-0, 0
LE-1,1
Step 4:

Broker A (follower) Broker B (Leader) = Remote Storage RL metadata storage
0: msg O LE-0 0: msg 0 LE-0 seg-0-1: seg-0-1, uuid-1
1: msg 3 LE-1 1: msg 3 LE-1 log: segment epochs
2:msg 4 LE-1 (HW)  2: msg 4 LE-1 (HW)  0: msg O LE-0 LE-O, 0
leader_epochs leader_epochs 1: msg 1 LE-O
LE-0, 0 LE-0, 0 epoch: seg-1-1, uuid-2
LE-1,1 LE-1,1 LE-0, 0 segment epochs
seg-1-1 LE-1,1

log:

1: msg 3 LE-1

epoch:

LE-0, 0

LE-1,1
A new message (message 4) is received. The 2nd segment on broker B (seg-1-1) is shipped to remote storage.
Consider the local segments up to offset 2 are deleted on both brokers:

A consumer fetches offset 0, LE-0. According to the local leader epoch cache, offset 0 LE-0 is valid. So, the broker returns message 0 from remote
segment 0-1.

A pre-KIP-320 consumer fetches offset 1, without leader epoch info. According to the local leader epoch cache, offset 1 belongs to LE-1. So, the broker
returns message 3 from remote segment 1-1, rather than the LE-0 offset 1 message 1 in seg-0-1.

A consumer fetches offset 2 LE-0 is fenced (KIP-320).

A consumer fetches offset 1 LE-1 receives message 3 from remote segment 1-1.

Scenario 4: unclean leader election including truncation.

Step 1:



Broker A (Leader) ' Broker B (out-of-sync) Remote Storage RL metadata storage

0: msg O LE-O 0: msg 0 LE-0 (HW) seg 0-2: seg-0-2, uuid-1
1: msg 1 LE-O leader_epochs log: segment epochs
2:msg 2 LE-O LE-0, 0 0: msg O LE-O LE-0,0
3: msg 3 LE-0 (HW) 1: msg 1 LE-O
leader_epochs 2:msg 2 LE-0
LE-0, 0 epoch:
LE-0, 0
Step 2:

Broker A (Stopped) Broker B (Leader) Remote Storage RL metadata storage

0: msg O LE-O seg 0-2: seg-0-2, uuid-1
1:msg 4 LE-1 log: segment epochs
2:msg 5 LE-1 0: msg O LE-O LE-0, 0
(HW) 1: msg 1 LE-0
leader_epochs 2: msg 2 LE-0 seg-0-1, uuid-2
LE-0, 0 epoch: segment epochs
LE-1,1 LE-0, 0 LE-0, 0

seg 0-1: LE-1,1

0: msg O LE-O

1: msg 4 LE-1

epoch:

LE-0,0

LE-1,1

Broker A stopped, an out-of-sync replica (broker B) became the new leader. With unclean-leader-election, it's acceptable to lose data, but we have to
make sure the existing Kafka behaviour is not changed.

We assume min.in_sync = 1 in this example.
Broker B ships its local segment (seg-0-1) to remote storage, after the highwater mark is moved to 2 (message 5).

Step 3:

Broker A (Stopped) Broker B (Leader) = Remote Storage RL metadata storage

2: msg 5 LE-1 (HW) @ seg 0-2: seg-0-2, uuid-1
leader_epochs log: segment epochs
LE-0, 0 0: msg 0 LE-O LE-0, 0

LE-1,1 1: msg 1 LE-O

2: msg 2 LE-O seg-0-1, uuid-2
epoch: segment epochs
LE-0, 0 LE-0,0

seg 0-1: LE-1,1

0: msg O LE-O

1:msg4LE-1

epoch:

LE-0, 0

LE-1,1

The 1st local segment on broker B expired.



A consumer fetches offset 0 LE-O receives message 0 (LE-0, offset 0). This message can be served from either remote segment seg-0-2 or seg-0-1.

A pre-KIP-320 consumer fetches offset 1. The broker finds offset 1 belongs to leader epoch 1. So, it returns message 4 (LE-1, offset 1) to the consumer,
rather than message 1 (LE-O, offset 1).

A post-KIP-320 consumer fetches offset 1 LE-1 receives message 4 (LE-1, offset 1) from remote segment 0-1.

A consumer fetches offset 2 LE-0 is fenced (KIP-320).

Scenario 5: log divergence in remote storage - unclean leader election

step 1
Broker A (Leader) Broker B Remote Storage = Remote Segment Metadata
0: msg O LE-O 0: msg O LE-O seg-0-3 seg-0-3, uuidl
1: msg 1 LE-O 1: msg 1 LE-O log: segment epochs
2: msg 2 LE-O leader_epochs 0: msg O LE-0 LE-0, 0
3: msg 3 LE-O LE-0,0 1: msg 1 LE-O
4: msg 4 LE-0 (HW) 2:msg 2 LE-O
leader_epochs broker B is out-of-sync = 3: msg 3 LE-0
LE-0, 0 epoch:
broker A shipped one segment to remote storage LEO, 0

step 2

An out-of-sync broker B becomes the new leader, after broker A is down. (unclean leader election)

Broker A Broker B (Leader) Remote RL metadata
(stopped) Storage storage
0: msg O LE-O 0: msg O LE-O seg-0-3 seg-0-3, uuidl
1: msg 1 LE-O 1: msg 1 LE-O0 log: segment epochs
2:msg 2 LE-O 2:msg 4 LE-1 0:msgOLE-O LE-0,0
3: msg 3 LE-O 3:msg 5 LE-1 1: msg 1 LE-O0
4: msg 4 LE-O0 4:msg 6 LE-1 2:msg 2 LE-0 | seg-0-3, uuid2
leader_epochs leader_epochs 3:msg 3LE-0  segment epochs
LE-0, 0 LE-0,0 epoch: LE-0, 0
LE-1, 2 LE-0, 0 LE-1, 2
Seg-0-3
After becoming the new leader, B received several new messages, and shipped one segment to remote 0: msg O LE-O
storage.
1: msg 1 LE-0
2:msg 4 LE-1
3:msg 5 LE-1
epoch:
LE-0,0
LE-1, 2

step 3



Broker B is down. Broker A restarted without knowing LE-1. (another unclean leader election)

Broker A (Leader) Broker B (stopped) Remote Storage =RL metadata storage
0: msg 0 LE-O 0: msg O LE-O seg-0-3 seg-0-3, uuidl
1: msg 1 LE-O 1: msg 1 LE-O log: segment epochs
2:msg 2 LE-0 2: msg 4 LE-1 0: msg 0 LE-0 LE-0,0

3: msg 3 LE-O 3:msg 5 LE-1 1: msg 1 LE-O

4: msg 4 LE-0 4:msg 6 LE-1 2: msg 2 LE-O seg-0-3, uuid2
5:msg 7 LE-2 leader_epochs 3: msg 3 LE-O segment epochs
6: msg 8 LE-2 LE-O, 0 epoch: LE-0, 0
leader_epochs LE-1, 2 LE-0,0 LE-1, 2

LE-0, 0 seg-0-3

LE-2,5 0: msg O LE-O seg-4-5, uuid3
1. Broker A receives two new messages in LE-2 1: msg 1 LE-O segment epochs
2. Broker A ships seg-4-5 to remote storage 2:msg 4 LE-1 LE-0, 0

3:msg 5 LE-1 LE-2,5
epoch:

LE-0,0

LE-1, 2

seg-4-5

epoch:

LE-0,0

LE-2,5

step 4
Broker B reimaged and lost all the local data

Broker A Broker B (started, follower) Remote RL metadata
(Leader) Storage storage



6: msg 8 LE-2 1. Broker B fetches offset 0, and receives OMTS error. seg-0-3 seg-0-3, uuidl

leader_epochs 2. Broker B receives ELO=6, LE-2 log: segment epochs
LE-0, 0 3. in BuildingRemoteLogAux state, broker B finds seg-4-5 has LE-2. So, it builds local LE cache from seg- ' 0: msg 0 LE-0 LE-0,0

4-5:
LE-2,5 1: msg 1 LE-O

leader_epochs
2: msg 2 LE-O seg-0-3, uuid2

LE-0,0
3: msg 3 LE-O segment epochs
LE-2,5
epoch: LE-0,0
4. Broker B continue fetching from local messages from ELO 6, LE-2
LE-0,0 LE-1,2
5. Broker B joins ISR
seg-0-3

0: msg 0 LE-O seg-4-5, uuid3
1: msg 1 LE-O segment epochs
2:msg 4 LE-1 LE-0,0

3:msg 5 LE-1 LE-2,5

epoch:

LE-0,0

LE-1,2

seg-4-5

epoch:

LE-0,0

LE-2,5

A consumer fetches offset 3, LE-1 from broker B will be fenced.

A pre-KIP-320 consumer fetches offset 2 from broker B will get msg 2 (offset 2, LE-0).

Follower to leader transition

A follower can be considered as a leader by the controller based on its replica configuration. When a follower becomes a leader it needs to find out the
offset from which the segments to be copied to remote storage. This is found by traversing from the latest leader epoch from leader epoch history and find
the highest offset of a segment with that epoch copied into remote storage. If it can not find an entry then it checks for the previous leader epoch till it finds
an entry, If there are no entries till the earliest leader epoch in leader epoch cache then it starts copying the segments from the earliest epoch entry’s offset.

Step 1:

Broker A (Leader) @ Broker B (Follower) Remote Storage RL metadata storage



0: msg O LE-O 0: msg O LE-O seg-0-2, uuid-1 seg-0-2, uuid-1

1: msg 1 LE-O 1: msg 1 LE-O log: Segment epochs
2:msg 2 LE-O0 2:msg 2 LE-O 0: msg 0 LE-O LE-0,0
3: msg 3 LE-1 3:msg 3 LE-1 1: msg 1 LE-O
4:msg 4 LE-1 4:msg 4 LE-1 2:msg 2 LE-O
5:msg 5 LE-1 5:msg 5 LE-1 epochs:
6: msg 6 LE-2 (HW) = 6: msg 6 LE-2 (HW) LE-0, 0
7:msg 7 LE-2 seg-3-4, uuid-2
8: msg 8 LE-2 seg 3-4, uuid-2 Segment epochs
log: LE-1, 3
3: msg 3 LE-1
leader_epochs
leader_epochs 4: msg 4 LE-1
LE-0,0
LE-0, 0 epochs:
LE-1, 3
LE-1,3 LE-0,0
LE-2, 6
LE-2,6 LE-1,3
Step 2:

Broker A is crashed/stopped and Broker B became a leader. It checks from leader epoch-2 whether there are any segments and it traverses back till it
finds a segment for the leader epoch. In this case, it finds offset 4 for leader epoch-1 from RLMM. It needs to copy segments containing offset 5. So, it
starts copying from the “seg-4-6" segment.

Broker A (Stopped) Broker B (Leader) = Remote Storage RL metadata storage



seg-0-2, uuid-1 seg-0-2, uuid-1

0: msg O LE-O 0: msg O LE-O log: Segment epochs
1:msg 1 LE-O0 1:msg 1LE-O0 0: msg 0 LE-O0 LE-0,0
2:msg 2 LE-O 2: msg 2 LE-O 1:msg 1 LE-O
3:msg 3 LE-1 3:msg 3 LE-1 2: msg 2 LE-O
4: msg 4 LE-1 4:msg 4 LE-1 epochs:
5:msg 5 LE-1 5:msg 5 LE-1 LE-0, 0
6: msg 6 LE-2 (HW) @ 6: msg 6 LE-2 (HW)
7:msg 7 LE-2 7: msg 8 LE-3 seg-3-4, uuid-2 seg-3-4, uuid-2
8: msg 8 LE-2 log: Segment epochs
3: msg 3 LE-1 LE-1, 3
4:msg 4 LE-1
leader_epochs leader_epochs
epochs:
LE-O, O LE-0, 0
LE-0,0
LE-1,3 LE-1,3
LE-1,3
LE-2,6 LE-2, 6
LE-3,7
Seg-4-6, uuid-3
4:msg 4 LE-1
seg-4-6, uuid-3
5:msg 5 LE-1
Segment epochs
6: msg 6 LE-2
LE-1,3
epochs:
LE-2, 6
LE-0, 0
LE-1,3
LE-2,6

Transactional support

RemoteLogManager copies transaction index and producer-id-snapshot along with the respective log segment earlier to last-stable-offset. This is used by
the followers to return aborted transactions in fetch requests with isolation level as READ_COMMITTED.

Consumer Fetch Requests
For any fetch requests, ReplicaManager will proceed with making a call to readFromLocallLog, if this method returns OffsetOutOfRange exception it will

delegate the read call to RemoteLogManager. More details are explained in the RLM/RSM tasks section. If the remote storage is not available then it will
throw a new error TIERED_STORAGE_NOT_AVAILABLE.

Other APIs

DeleteRecords
There is no change in the semantics of this API. It deletes records until the given offset if possible. This is equivalent to updating logStartOffset of the
partition log with the given offset if it is greater than the current log-start-offset and it is less than or equal to high-watermark. If needed, it will clean remote

logs asynchronously after updating the log-start-offset of the log. RLMTask for leader partition periodically checks whether there are remote log segments
earlier to logStartOffset and the respective remote log segment metadata and data are deleted by using RLMM and RSM.

ListOffsets

ListOffsets API gives the offset(s) for the given timestamp either by looking into the local log or remote log time indexes.
If the target timestamp is

ListOffsetRequest. EARLIEST_TIMESTAMP (value as -2) returns logStartOffset of the log.

ListOffsetRequest.LATEST_TIMESTAMP(value as-1) returns log-stable-offset or log-end-offset based on the isolation level in the request.



This APl is enhanced with supporting new target timestamp value as -4 which is called EARLIEST_LOCAL_TIMESTAMP. There will not be any new fields
added in request and response schemes but there will be a version bump to indicate the version update. This request is about the offset that the followers
should start fetching to replicate the local logs. It represents the log-start-offset available in the local log storage which is also called as local-log-start-
offset. All the records earlier to this offset can be considered as copied to the remote storage. This is used by follower replicas to avoid fetching records
that are already copied to remote tier storage.

When a follower replica needs to fetch the earliest messages that are to be replicated then it sends a request with the target timestamp as
EARLIEST_LOCAL_TIMESTAMP.

For timestamps >= 0, it returns the first message offset whose timestamp is >= to the given timestamp in the request. That means it checks in remote log
time indexes first, after which local log time indexes are checked.

LeaderAndlsr

This is received by RLM to register for new leaders so that the data can be copied to the remote storage. RLMM will also register the respective metadata
partitions for the leader/follower partitions if they are not yet subscribed.

Stopreplica

RLM receives a callback and unassigns the partition for leader/follower task, If the delete option is enabled then the leader will stop RLM task and stop
processing. The controller will not allow topic with the same name to be created till all the segments are cleaned up from remote storage.

It was discussed in the community earlier for adding UUID to represent a topic along with the name as part of KIP-516. This enhancement will be useful to

make the deletion of topic partitions in remote storage asynchronously without blocking the creation of topic with the same name even though all the
segments are not deleted in remote storage.

OffsetForLeaderEpoch

Look into leader epoch checkpoint cache. This is stored in tiered storage and it may be fetched by followers from tiered storage as part of the fetch
protocol.

LogStartOffset

LogStartOffset of a topic can point to either of local segment or remote segment but it is initialised and maintained in the Log class like now. This is already
maintained in “Log" class while loading the logs and it can also be fetched from RemoteLogMetadataManager.

There are no changes with other protocol APIs because of tiered storage.

RLM/RSM tasks and thread pools

Remote storage (e.g. HDFS/S3/GCP) is likely to have higher 1/O latency and lower availability than local storage.

When the remote storage becoming temporarily unavailable (up to several hours) or having high latency (up to minutes), Kafka should still be able to
operate normally. All the Kafka operations (produce, consume local data, create/expand topics, etc.) that do not rely on remote storage should not be
impacted. The consumers that try to consume the remote data should get reasonable errors, when remote storage is unavailable or the remote storage
requests timeout.

To achieve this, we have to handle remote storage operations in dedicated threads pools, instead of Kafka 1/O threads and fetcher threads.

1. Remote Log Manager (RLM) Thread Pool

RLM maintains a list of the topic-partitions it manages. The list is updated in Kafka 1/O threads, when topic-partitions are added to / removed from
RLM. Each topic-partition in the list is assigned a scheduled processing time. The RLM thread pool processes the topic-partitions that the
"scheduled processing time" is less than or equal to the current time.

When a new topic-partition is assigned to the broker, the topic-partition is added to the list, with scheduled processing time = 0, which means the
topic-partition has to be processed immediately, to retrieve information from remote storage.

After a topic-partition is successfully processed by the thread pool, it's scheduled processing time is set to ( now() + remote.log.manager.task.
interval.ms ). remote.log.manager.task.interval.ms can be configured in broker config file.

If the process of a topic-partition is failed due to remote storage error, it follows retry backing off algorithm with intiial retry interval as ‘remote.log.
manager.task.retry.interval.ms’, max backoff as ‘remote.log.manager.task.retry.backoff.max.ms, and jitter as “remote.log.manager.task.retry.jitter'.
You can see more details about the exponential backoff algorithm here.

When a topic-partition is unassigned from the broker, the topic-partition is not currently processed by the thread pool, the topic-partition is directly
removed from the list; otherwise, the topic-partition is marked as "deleted", and will be removed after the current process is done.

Each thread in the thread pool processes one topic-partition at a time in the following steps:
Copy log segments to remote storage (leader)
Copy the log segment files that are

- inactive and


https://cwiki.apache.org/confluence/display/KAFKA/KIP-516%3A+Topic+Identifiers
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/utils/ExponentialBackoff.java#L30

- the offset range is not covered completely by the segments on the remote storage and
- those segments have the last offset < last-stable-offset of the partition.

If multiple log segment files are ready, they are copied to remote storage one by one, from the earliest to the latest. It generates a universally
unique RemoteLogSegmentld for each segment, it calls RLMM.putRemoteLogSegmentData(RemoteLogSegmentMetadata
remoteLogSegmentMetadata) and it invokes copyLogSegment(RemoteLogSegmentMetadata remoteLogSegmentMetadata,
LogSegmentData logSegmentData) on RSM. If it is successful then it calls RLMM.putRemoteLogSegmentData with the updated state in

RemoteLogSegmentMetadata.

Handle expired remote segments (leader)

RLM leader computes the log segments to be deleted based on the remote retention config. It updates the earliest offset for the given topic
partition in RLMM. It gets all the remote log segment ids and removes them from remote storage using RemoteStorageManager. It also
removes respective metadata using RemoteLogMetadataManager.

2. Remote Storage Fetcher Thread Pool

When handling consumer fetch request, if the required offset is in remote storage, the request is added into "RemoteFetchPurgatory”, to handle
timeout. RemoteFetchPurgatory is an instance of kafka.server.DelayedOperationPurgatory, and is similar to the existing produce/fetch purgatories.
At the same time, the request is put into the task queue of "remote storage fetcher thread pool”.

Each thread in the thread pool processes one remote fetch request at a time. The remote storage fetch thread will

1. find out the corresponding RemoteLogSegmentld from RLMM and startPosition and endPosition from the offset index.
2. try to build Records instance data fetched from RSM.fetchLogSegmentData(RemoteLogSegmentMetadata remoteLogSegmentMetadata, Long
startPosition, Long endPosition)
a. if success, RemoteFetchPurgatory will be notified to return the data to the client
b. if the remote segment file is already deleted, RemoteFetchPurgatory will be notified to return an error to the client.
c. if the remote storage operation failed (remote storage is temporarily unavailable), the operation will be retried with Exponential Back-Off,
until the original consumer fetch request timeout.

Remote Log Metadata State transitions

CopySegment CopySegment
Started Finished
DeleteSegment DeleteSegment
Started Finished
DeletePartition DeletePartition DeletePartition
Marked Started Finished

COPY_SEGMENT_STARTED - This state indicates that the segment copying to remote storage is started but not yet finished.

COPY_SEGMENT_FINISHED - This state indicates that the segment copying to remote storage is finished.



The leader broker copies the log segments to the remote storage and puts the remote log segment metadata with the state as “COPY_SEGMENT_START
ED” and updates the state as “COPY_SEGMENT_FINISHED” once the copy is successful.

DELETE_SEGMENT_STARTED - This state indicates that the segment deletion is started but not yet finished.
DELETE_SEGMENT_FINISHED - This state indicates that the segment is deleted successfully.

Leader partitions publish both the above delete segment events when remote log retention is reached for the respective segments. Remote Partition
Removers also publish these events when a segment is deleted.

DELETE_PARTITION_MARKED - This is published when a topic/partition is deleted by the controller. This partition is marked for delete by the controller.
That means, all its remote log segments are eligible for deletion so that remote partition removers can start deleting them.

DELETE_PARTITION_STARTED - This state indicates that the partition deletion is started but not yet finished.
DELETE_PARTITION_FINISHED - This state indicates that the partition is deleted successfully.
Remote Partition Removers also publish these events when a partition is deleted.

When a partition is deleted, the controller updates its state in RLMM with DELETE_PARTITION_MARKED and it expects RLMM will have a mechanism to
clean up the remote log segments. This process for default RLMM is described in detail here.

RemoteLogMetadataManager implemented with an internal topic

Metadata of remote log segments are stored in an internal non compact topic called *__remote_log_metadata’. This topic can be created with default
partitions count as 50. Users can configure the partitions count and replication factor etc as mentioned in the config section.

In this design, RemoteLogMetadataManager(RLMM) is responsible for storing and fetching remote log segment metadata. It provides

® Storing remote log segment metadata for a partition's log segment

® Fetching remote log segment metadata for an offset and leader epoch.

® Register a topic partition to build cache for remote log segment metadata by reading from remote log segment metadata topic
RemoteLogMetadataManager(RLMM) mainly has the below components

® Cache

® Producer

® Consumer

Remote log metadata topic partition for a given user topic-partition is:

Utils.toPositive(Utils.murmur2(tp.toString().getBytes(StandardCharsets.UTF_8))) %
no_of_remote_log_metadata_topic_partitions

RLMM registers the topic partitions that the broker is either a leader or a follower. These topic partitions include the remote log metadata topic partitions
also.

RLMM maintains metadata cache by subscribing to the respective remote log metadata topic partitions. Whenever a topic partition is reassigned to a new
broker and RLMM on that broker is not subscribed to the respective remote log metadata topic partition then it will subscribe to the respective remote log
metadata topic partition and adds all the entries to the cache. So, in the worst case, RLMM on a broker may be consuming from most of the remote log
metadata topic partitions. In the initial version, we will have a file-based cache for all the messages that are already consumed by this instance and it will

load in-memory whenever RLMM is started. This cache is maintained in a separate file for each of the topic partitions. This will allow us to commit offsets
of the partitions that are already read. Committed offsets can be stored in a local file to avoid reading the messages again when a broker is restarted.

RLMM segment overhead:

Topic partition's topic-id : uuid : 2 longs.

remoteLogSegmentld : uuid : 2 longs.

remoteLogSegmentMetadata : 5 longs + 1 int +1 byte + ~3 epochs(approx avg)
It has leader epochs in-memory which will be much less.

On avg: 10 longs : 10 * 8 = 80 *(other overhead 1.25) = 100 bytes

When a segment is rolled on a broker per sec.

retention as 30days : 60*60*24*30 ~ 2.6MM

2.6MM segments would take ~ 260MB. (This is 1% in our production env)



This overhead is not that significant as brokers may be using several GBs of memory.

We can also have a lazy load approach by keeping only minimal in-memory entries like offset, epoch, uuid, and entry position in the file. When it is needed
we can access it by using the entry position in the file.

Message Format

RLMM instance on broker publishes the message to the topic with key as null and value with the below format.
type : Represents the value type. This value is 'apikey' as mentioned in the schema. Its type is 'byte'.
version : the 'version' number of the type as mentioned in the schema. Its type is 'byte".

data  :record payload in kafka protocol message format, the schema is given below.

Both type and version are added before the data is serialized into record value. Schema can be evolved by adding a new version with the respective
changes. A new type can also be supported by adding the respective type and its version.

Schema
{
"api Key": 0,
"type": "data",
"name": "Renpt eLogSegnent Met adat aRecord"”,
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{
"nane": "RenotelLogSegnent!d",
"type": "RenotelLogSegnent!| dEntry",
"versions": "O0+",
"about": "Unique representation of the renpote | og segnment",
"fields": [
{
"name": "TopicldPartition",
"type": "TopicldPartitionEntry",
"versions": "0+",
"about": "Represents unique topic partition",
"fields": [
{
"name": "Name",
"type": "string",
"versions": "0+",
"about": "Topic nane"
.
{
“nane": "Id",
"type": "uuid",
"versions": "0+",
"about": "Unique identifier of the topic"
H
{
"name": "Partition",
"type": "int32",
"versions": "O0+",
"about": "Partition nunber"
}
]
H
{
"name": "1d",
"type": "uuid",
"versions": "O0+",
"about": "Unique identifier of the renote | og segnent”
}
]
H
{
"name": "StartCOffset",
"type": "int64",
"versions": "O0+",
"about": "Start offset of the segnent.”



nanme": "EndOffset"”,

"type": "int64",

"versions": "0+",

"about": "End offset of the segnent.”

name": "Leader Epoch",

"type": "int32",

"versions": "0+",

"about": "Leader epoch fromwhich this segnent instance is created or updated"

"nane": "MaxTi mestanp”,

"type": "int64",

"versions": "0+",

"about": "Maximumtinmestanp with in this segnent."

nanme": "Event Ti nestanp”,

"type": "int64",

"versions": "O0+",

"about": "Event tinestanp of this segnent.

name": "Segnent Leader Epochs",
"type": "[]Segment Leader EpochEntry",
"versions": "0+",

"about": "Leader epoch cache.",
"fields": [

{

name": "Leader Epoch",
"type": "int32",
"versions": "0+",
"about": "Leader epoch"

"name": "Ofset"”,
"type": "int64",
"versions": "0+",
"about": "Start offset for the |eader epoch”

"nane": "Segment Si zel nByt es",
"type": "int32",

"versions": "0+",

"about": "Segnent size in bytes"

nane": "RenotelLogSegnent State",

"type": "int8",

"versions": "0+",

"about": "State of the renpote |og segnent”

"api Key": 1,
"type": "data",
"name": "Renot eLogSegnent Met adat aRecor dUpdat e",

"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{
"name": "RenotelLogSegnentld",

"type": "RenotelLogSegment|dEntry",
"versions": "0+",



"about": "Unique representation of the renote | og segnent"”,
"fields": [
{

nanme": "TopicldPartition",

"type": "TopicldPartitionEntry",

"versions": "0+",

"about": "Represents unique topic partition",
"fields": [

{

nane": "Nane",
"type": "string",
"versions": "0+",
"about": "Topic nane"

nane": "ld",

"type": "uuid",

"versions": "0+",

"about": "Unique identifier of the topic"

"nanme": "Partition",

"type": "int32",

"versions": "0+",

"about": "Partition nunber"

]
H
{
"name": "1d",
"type": "uuid",
"versions": "0+",
"about": "Unique identifier of the renmpte | og segnent"

"nane": "Leader Epoch",

"type": "int32",

"versions": "0+",

"about": "Leader epoch fromwhich this segnent instance is created or

nane": "EventTi nestanp”,

"type": "int64",

"versions": "O0+",

"about": "Event tinestanp of this segnent."

nane": "RenotelLogSegnent State”,
"type": "int8",

"versions": "0+",

"about": "State of the renpote segnent”

"api Key": 2,
"type": "data",
"name": "RenotePartitionDel et eMet adat aRecord",
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{
"nane": "TopicldPartition",
"type": "TopicldPartitionEntry",
"versions": "O0+",
"about": "Represents unique topic partition”,

updat ed"



"fields": [

{
"name": "Name",
"type": "string",
"versions": "0+",
"about": "Topic nane"
b
{
"name": "1d",
"type": "uuid",
"versions": "O0+",
"about": "Unique identifier of the topic"
I
{
"name": "Partition",
"type": "int32",
"versions": "0+",
"about": "Partition nunber"
}
]
I
{
"name": "Epoch",
"type": "int32",
"versions": "0+",

"about": "Epoch (controller or leader) fromwhich this event is created. DELETE_PARTI TI ON_MARKED i s sent
by the controller. DELETE_PARTI TI ON_STARTED and DELETE_PARTI TI ON_FI Nl SHED are sent by renpote |og netadata topic
partition |eader."

I
{
"name": "EventTi nestanp”,
"type": "int64",
"versions": "O0+",
"about": "Event tinestanp of this segnment."
b
{
"nanme": "RenotePartitionDel eteState",
"type": "int8",
"versions": "0+",
"about": "Deletion state of the renpte partition”
}

]
}

package org. apache. kaf ka. server. | og. renot e. st or age;

/**

* It indicates the deletion state of the renpte topic partition. This will be based on the action executed on
this

* partition by the renote log service inplenentation.

*/

public enum RenptePartitionDel eteState {

/**

* This is used when a topic/partition is determned to be deleted by controller.

* This partition is marked for delete by controller. That nmeans, all its renpte |og segnents are eligible
for

* deletion so that renote partition renpvers can start deleting them

*/

DELETE_PARTI TI ON_MARKED( ( byt e) 0),

/**

* This state indicates that the partition deletion is started but not yet finished.
*/

DELETE_PARTI TI ON_STARTED( (byte) 1),

/**
* This state indicates that the partition is deleted successfully.
*/

DELETE_PARTI TI ON_FI NI SHED( ( byte) 2);



package org. apache. kaf ka. server. | og. renot e. st or age;

/**

* It indicates the state of the renote | og segment or partition. This will be based on the action executed on
this

* segnment or partition by the renpte | og service inplenentation.

* o<p>

*/

publ i ¢ enum Renpt eLogSegnent State {

/**

* This state indicates that the segment copying to renpte storage is started but not yet finished.
*/

COPY_SEGVENT_STARTED( (byte) 0),

/**

* This state indicates that the segment copying to renmpte storage is finished.
*/

COPY_SEGVENT_FI NI SHED( (byte) 1),

/**
* This state indicates that the segnent deletion is started but not yet finished.
*/

DELETE_SEGVENT_STARTED( (byte) 2),

| **

* This state indicates that the segment is del eted successfully.
*/
DELETE_SEGVENT_FI NI SHED( ( byte) 3),

Configs

remote.log. = Replication factor of the topic
metadata.

topic. Default: 3

replication.

factor

remote.log. = No of partitions of the topic
metadata.

topic.num. Default: 50

partitions

remote.log. | Retention of the topic in milli seconds.

metadata.

topic. Default: -1, that means unlimited.

retention.

ms Users can configure this value based on their usecases. To avoid any data loss, this value should be more than the maximum retention

period of any topic enabled with tiered storage in the cluster.

remote.log. | Listener name to be used to connect to the local broker by RemoteLogMetadataManager implementation on the broker. This is a
metadata. mandatory config while using the default RLMM implementation which is “org.apache.kafka.server.log.remote.metadata.storage.

manager. TopicBasedRemoteLogMetadataManager’. Respective endpoint address is passed with "bootstrap.servers" property while invoking
listener. RemoteLogMetadataManager#configure(Map<String, ?> props).
name

This is used by kafka clients created in RemoteLogMetadataManager implementation.


http://remote.log.metadata.manager.listener.name
http://remote.log.metadata.manager.listener.name
http://remote.log.metadata.manager.listener.name
http://remote.log.metadata.manager.listener.name
http://remote.log.metadata.manager.listener.name

remote.log. = Default RLMM implementation creates producer and consumer instances. Common client properties can be configured with ‘remote.log.
metadata.* | metadata.common.client.” prefix. User can also pass properties specific to producer/consumer with “remote.log.metadata.producer.”
and ‘remote.log.metadata.consumer.” prefixes. These will override properties with ‘remote.log.metadata.common.client.” prefix.

Any other properties should be prefixed with the config: "remote.log.metadata.manager.impl.prefix", default value is "rlmm.config.". These
configs will be passed to RemoteLogMetadataManager#configure(Map<String, ?> props).

For example: "rimm.config.remote.log.metadata.producer.batch.size=100" will set the bat ch. si ze config for the producer inside default

RLMM.
remote. The interval at which remote partition remover runs to delete the remote storage of the partitions marked for deletion.
partition. Default value: 3600000 (1 hr)
remover.
task.
interval.ms

Committed offsets file format

Committed offsets are stored in a local file *_rlmm_committed_offsets™ under log dir. This file contains offset entry for each subscribed remote log
metadata partition as "<partition-no> <offset>".

_rimm_committed_offsets

0 2022
4 104
2 498

Internal flat-file store format of remote log metadata

RLMM stores the remote log metadata messages and builds materialized instances in a flat-file store for each user topic partition.

flat_file_format

<magi c><t opi c- nane><t opi c- i d><net adat a- t opi c- of f set ><sequence- of -seri al i zed-entri es>

magi c:

unsi gned var int, version of this file format.
t opi c- nane:

string, topic nane.
topic-id:

uuid, uuid of topic
nmet adat a-t opi c- of f set:

var long, offset of the renpte |og netadata topic partition upto which this topic partition's renote |og
metadata is fetched.
serialized-entries:

sequence of serialized entries defined as below, nore types can be added |ater if needed.

Serialization of entry is done as nentioned below. This is very sinmlar to the nessage format mentioned earlier
for storing into the netadata topic.

I engt h : unsigned var int, length of this entry which is sumof sizes of type, version, and data.

type : unsigned var int, represents the value type. This value is 'apikey' as nentioned in the schenma.
versi on : unsigned var int, the 'version' nunber of the type as nentioned in the schena.

data : record payload in kafka protocol nessage format, the schena is given bel ow

Both type and version are added before the data is serialized into record value. Schema can be evol ved by
addi ng a new version with the respective changes. A new type can al so be supported by adding the respective
type and its version.

"api Key": 0,
"type": "data",
"name": "Renot eLogSegnent Met adat aRecor dSt ored",
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{

name": "Segnentld",



"type": "uuid",

"versions": "0+",
"about": "Unique identifier of the | og segnent”
"nanme": "StartOffset",
"type": "int64",
"versions": "O0+",
"about": "Start offset of the segment."
"name": "EndOffset",
"type": "int64",
"versions": "0+",
"about": "End offset of the segnent.”
"name": "Leader Epoch",
"type": "int32",
"versions": "0+",
"about": "Leader epoch fromwhich this segnent instance is created or
"name": "MaxTi mest anp”,
"type": "int64",
"versions": "0+",
"about": "Maximumtinmestamp with in this segnent."
"name": "EventTi nestanp"”,
"type": "int64",
"versions": "0+",
"about": "Event tinestanp of this segnment."
"nane": "Segnent Leader Epochs",
"type": "[]Segnent Leader EpochEntry",
"versions": "O0+",
"about": "Event tinestanp of this segnent.",
"fields": [
{
"name": "Leader Epoch",
"type": "int32",
"versions": "0+",
"about": "Leader epoch"
b
{
"name": "COffset",
"type": "int64",
"versions": "0+",
"about": "Start offset for the |eader epoch”
}
]
"name": "Segnent Si zel nBytes",
"type": "int32",
"versions": "0+",
"about": "Segnent size in bytes"
"name": "RenotelLogSegnent St ate",
"type": "int8",
"versions": "0+",
"about": "State of the renpte | og segnent”

updat ed"”



"api Key": 1,
"type": "data",

"name": "DeletePartitionStateRecord",
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{
"name": "Epoch",
"type": "int32",
"versions": "0+",
"about": "Epoch (controller or |eader) fromwhich this event is created. DELETE_PARTI TI ON_MARKED i s sent

by the controller. DELETE PARTI TI ON_STARTED and DELETE_PARTI TI ON_FI NI SHED are sent by renpte | og netadata topic
partition | eader."

}
{
"name": "EventTi nestanp"”,
"type": "int64",
"versions": "0+",
"about": "Event tinestanp of this segment."
b
{
"nanme": "RenotePartitionDel eteState",
"type": "int8",
"versions": "0+",
"about": "Deletion state of the renote partition"
}

Message Formatter for the internal topic

‘org.apache.kafka.server.log.remote.storage.RemoteLogMetadataFormatter™ can be used to format messages received from remote log metadata topic by
console consumer. Users can pass properties mentioned in the below block with '—property’ while running console consumer with this message formatter.
The below block explains the format and it may change later. This formatter can be helpful for debugging purposes.



Internal message format

partition: <val ><sep>nessage- of f set : <val ><sep>t ype: <Renot eLogSegnent Met adat a | Renot eLogSegnent Met adat aUpdate |
Del etePartitionStat e><sep>versi on: <_no_><vs>event -val ue: <string representation of the event>

val: represents the respective value of the key.
sep: represents the separator, default value is: ","

partition : Renote log netata topic partition nunber. This is optional.
Use print.partition property to print it, default is false

message-of fset : Offset of this nessage in renpte |og netadata topic. This is optional.
Use print.message. of fset property to print it, default is false

type: Event value type, which can be one of RenotelLogSegnent Met adata, RenptelLogSegnent Met adat aUpdat e,
Del etePartitionState val ues.

version: \Version nunber of the event value type. This is optional.
Use print.version property to print it, default is false

Use print.all.event.value.fields to print the string representation of the event which will include all the
fields in the data, default property value is false.

Event val ue can be of any of the types bel ow

renmote-1o0g-segnent-id is represented as "{id: <><sep>topi cl d: <val ><sep>t opi cNane: <val ><sep>partition:<val >}" in
the event val ue.

topic-id-partition is represented as "{topicld: <val ><sep>t opi cNane: <val ><sep>partition:<val >}" in the event

val ue.

For Renot eLogSegrent Met adat a
default representation is "{renote-|og-segnent-id: <val ><sep>start-offset: <val ><sep>end- of f set : <val ><sep>| eader -
epoch: <val ><sep>r enpt e- | 0g- segnent - st at e: <COPY_SEGVENT_STARTED | COPY_SEGMVENT_FI NI SHED | DELETE_SEGMVENT_STARTED
| DELETE_SEGMVENT_FI NI SHED>} "

For Renot eLogSegrent Met adat aUpdat e
default representation is "{renpte-|og-segnent-id: <val ><sep>| eader - epoch: <val ><sep>r enot e- | 0og- segnent - st at e:
<COPY_SEGMENT_STARTED | COPY_SEGVENT_FI NI SHED | DELETE_SEGVENT_STARTED | DELETE_SEGVENT_FI NI SHED>} "

For Del etePartitionState
default representation is "{topic-id-partition: <val ><sep>epoch: <val ><sep>renote-partition-del ete-state:
<DELETE_PARTI TI ON_MARKED | DELETE_PARTI TI ON_STARTED | DELETE_PARTI TI ON_FI NI SHED>

Topic deletion lifecycle

The controller receives a delete request for a topic. It goes through the existing protocol of deletion and it makes all the replicas offline stop taking any
fetch requests. After all the replicas reach the offline state, the controller publishes an event to the RemoteLogMetadataManager(RLMM) by marking the
topic as deleted using RemoteLogMetadataManager.updateRemotePartitionDeleteMetadata with the state as
RemotePartitionDeleteState#DELETE_PARTITION_MARKED. With KIP-516, topics are represented with uuid, and topics can be deleted asynchronously.
This allows the remote logs can be garbage collected later by publishing the deletion marker into the remote log metadata topic. RLMM is responsible for
asynchronously deleting all the remote log segments of a partition after receiving RemotePartitionDeleteState as DELETE_PARTITION_MARKED.


https://cwiki.apache.org/confluence/display/KAFKA/KIP-516%3A+Topic+Identifiers#KIP516:TopicIdentifiers-TopicIdPartition

RemotePartitionRemover RemotePartitionRemover RemotePartitionRemover

Leader Leader Leader

partition-1 partition-2 partition-3 remote log metadata partition

delete_parlition_marked

All replicas reached state
Controller "OfflineReplica”

Existing local log cleanup flow

Leader Follower Follower

Default RLMM handles the remote partition deletion by using RemotePartitionRemover(RPRM).

RPRM instance is created on a broker with the leaders of the remote log segment metadata topic partitions. This task is responsible for removing remote
storage of the topics marked for deletion. It consumes messages from those partitions remote log metadata partitions and filters the delete partition events
which need to be processed. It collects those partitions and executes deletion of the respective segments using RemoteStorageManager. This is done at
regular intervals of remote.partition.remover.task.interval.ms (default value of 1hr). It commits the processed offsets of metadata partitions once the
deletions are executed successfully. This will also be helpful to handle leader failovers to a different replica so that it can start processing the messages
where it left off.

RemotePartitionRemover(RPRM) processes the request with the following flow as mentioned in the below diagram.

1.

A WN

oo ~NoO G

The controller publishes DELETE_PARTITION_MARKED event to say that the partition is marked for deletion. There can be multiple events
published when the controller restarts or failover and this event will be deduplicated by RPRM.

. RPRM receives the DELETE_PARTITION_MARKED and processes it if it is not yet processed earlier.
. RPRM publishes an event DELETE_PARTITION_STARTED that indicates the partition deletion has already been started.
. RPRM gets all the remote log segments for the partition using RLMM and each of these remote log segments is deleted with the next steps.RLMM

subscribes to the local remote log metadata partitions and it will have the segment metadata of all the user topic partitions associated with that
remote log metadata partition.

. Publish DELETE_SEGMENT_STARTED event with the segment id.

. RPRM deletes the segment using RSM

. Publish DELETE_SEGMENT_FINISHED event with segment id once it is successful.

. Publish DELETE_PARTITION_FINISHED once all the segments have been deleted successfully.



Cantroller

RemoteLogMetadataManager

Leader - remote log metadata partition-2

2
RemoteLogMetadataManager
4 A
v oo vsl o s
RemotePartitionRemover
6
RemoteStorageManager

Protocol Changes

ListOffsets
Currently, it supports the listing of offsets based on the earliest timestamp and the latest timestamp of the complete log. There is no change in the protocol
but the new versions will start supporting listing earliest offsets based on the local logs but not only on the complete log including remote log. This protocol

will be updated with the changes from KIP-516 but there are no changes required as mentioned earlier. Request and response versions will be bumped to
version 7.

Fetch

We are bumping up fetch protocol to handle new error codes, there are no changes in request and response schemas. When a follower tries to fetch
records for an offset that does not exist locally then it returns a new error ‘OFFSET_MOVED_TO_TIERED_STORAGE". This is explained in detail here.

OFFSET_MOVED_TO_TIERED_STORAGE - when the requested offset is not available in local storage but it is moved to tiered storage.

Public Interfaces

Compacted topics will not have remote storage support.

Configs


https://cwiki.apache.org/confluence/pages/resumedraft.action?draftId=127406438&draftShareId=a771c960-b161-45d2-bf70-7dc0f3e225ab&
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage#KIP405:KafkaTieredStorage-Followerfetchprotocolindetail

System-Wide remote.log.storage.system.enable - Whether to enable tier storage functionality in a broker or not. Valid values are “true’ or “false’
and the default value is false. This property gives backward compatibility. When it is true broker starts all the services required for
tiered storage.

remote.log.storage.manager.class.name - This is mandatory if the remote.log.storage.system.enable is set as true.

remote.log.metadata.manager.class.name(optional) - This is an optional property. If this is not configured, Kafka uses an inbuilt
metadata manager backed by an internal topic.

RemoteStorageMa = (These configs are dependent on remote storage manager implementation)
nager
remote.log.storage.*

RemoteLogMetada = (These configs are dependent on remote log metadata manager implementation)
taManager
remote.log.metadata.*

Remote log remote.log.index.file.cache.total.size.mb
manager related The total size of the space allocated to store index files fetched from remote storage in the local storage.
configuration. Default value: 1024

remote.log.manager.thread.pool.size
Remote log thread pool size, which is used in scheduling tasks to copy segments, and clean up remote log segments.
Default value: 4

remote.log.manager.task.interval.ms
The interval at which the remote log manager runs the scheduled tasks like copy segments, and clean up remote log segments.
Default value: 30,000

Remote log manager tasks are retried with the exponential backoff algorithm mentioned here.

remote.log.manager.task.retry.backoff.ms
The amount of time in milliseconds to wait before attempting the initial retry of a failed remote storage request.
Default value: 500

remote.log.manager.task.retry.backoff.max.ms
The maximum amount of time in milliseconds to wait before attempting to retry a failed remote storage request.
Default value: 30,000

remote.log.manager.task.retry.jitter

Random jitter amount applied to the ‘remote.log.manager.task.retry.backoff.ms" for computing the resultant backoff interval. This
will avoid reconnection storms.

Default value: 0.2

remote.log.reader.threads
Remote log reader thread pool size, which is used in scheduling tasks to fetch data from remote storage.
Default value: 5

remote.log.reader.max.pending.tasks
Maximum remote log reader thread pool task queue size. If the task queue is full, broker will stop reading remote log segments.
Default value: 100

Per Topic Users can set the desired config for remote.storage.enable property for a topic, the default value is false. To enable tier storage for
Configuration a topic, set remote.storage.enable as true. You can not disable this config once it is enabled. We will provide this feature in future
versions.

Below retention configs are similar to the log retention. This configuration is used to determine how long the log segments are to
be retained in the local storage. Existing retention.* are retention configs for the topic partition which includes both local and
remote storage.

local.retention.ms
The number of milli seconds to keep the local log segment before it gets deleted. If not set, the value in “log.retention.ms" is used.
The effective value should always be less than or equal to retention.ms value.

local.retention.bytes
The maximum size of local log segments that can grow for a partition before it deletes the old segments. If not set, the value in
‘log.retention.bytes’ is used. The effective value should always be less than or equal to retention.bytes value.

Remote Storage Manager

"RemoteStorageManager” is an interface to provide the lifecycle of remote log segments and indexes. More details about how we arrived at this interface
are discussed in the document. We will provide a simple implementation of RSM to get a better understanding of the APIs. HDFS and S3 implementation
are planned to be hosted in external repos and these will not be part of Apache Kafka repo. This is in line with the approach taken for Kafka connectors.

Copying and Deleting APIs are expected to be idempotent, so plugin implementations can retry safely and overwrite any partially copied content, or not
failing when content is already deleted.


https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/utils/ExponentialBackoff.java#L30
https://docs.google.com/document/d/1qfkBCWL1e7ZWkHU7brxKDBebq4ie9yK20XJnKbgAlew/edit?ts=5e208ec7#heading=h.y6ht8qd8hbh

RemoteStorageManager

package org. apache. kaf ka. server. | og. renot e. st or age;

/**

* Renot eSt or ageManager provides the lifecycle of renpte | og segnents that includes copy, fetch, and delete
fromrenote

* storage.

* o<p>

* Each upload or copy of a segment is initiated with {@ink RenotelLogSegnent Met adata} containing {@ink

Renot eLogSegnent | d}

* which is universally unique even for the sanme topic partition and of fsets.

* <p>

* Renpt eLogSegnent Metadata is stored in {@ink RenoteLogMet adat aManager} before and after copy/delete
operations on

* Renpt eSt orageManager with the respective {@ink RenotelLogSegnentState}. {@ink RenotelLogMetadat aManager} is
* responsible for storing and fetching netadata about the renote | og segnments in a strongly consistent nanner.
* This all ows RenpteStorageManager to store segments even in eventually consistent manner as the netadata is

al r eady

* stored in a consistent store.

* <p>

* Al these APls are still evolving.
*/

@nterfaceStability. Unstable
public interface RenoteStorageManager extends Configurable, C oseable {

/**
* Type of the index file.
*/
enum | ndexType {
/**
* Represents offset index.
*/
O fset,

/**

* Represents tinestanp index.
*/

Ti mest anp,

/**

* Represents producer snapshot index.
*/

Producer Snapshot ,

/**

* Represents transaction index.
*/

Transacti on,

/**
* Represents | eader epoch index.
*/
Leader Epoch,
}
/**

* Copies the given {@ink LogSegnent Data} provided for the given {@ode renoteLogSegnent Metadata}. This
i ncl udes

* | og segnent and its auxiliary indexes |ike offset index, tine index, transaction index, |eader epoch
i ndex, and

* producer snapshot index.

* <p>

* I nvoker of this APl should always send a unique id as part of {@ink
Renot eLogSegnent Met adat a#r enot eLogSegnent | d() }

* even when it retries to invoke this nethod for the same | og segnent data.

* <p>

* This operation is expected to be idenpotent. If a copy operation is retried and there is existing
content already witten,



* it should be overwitten, and do not throw { @i nk RenoteStorageException}
*

* @aram renpt eLogSegnent Met adat a net adata about the renote | og segnent.

* @ar am | ogSegnent Dat a data to be copied to tiered storage.
* @hrows RenoteStorageException if there are any errors in storing the data of the segnent.
*

/

voi d copyLogSegnent Dat a( Renpt eLogSegnent Met adat a r enpt eLogSegnent Met adat a,
LogSegnent Dat a | ogSegnent Dat a)
t hrows Renot eSt or ageExcepti on;

/**

* Returns the renpte | og segnent data file/object as InputStreamfor the given {@ink
Renot eLogSegnent Met adat a}

* starting fromthe given startPosition. The streamw ||l end at the end of the renpote | og segnent data file
/ obj ect .

*

* @aram renot eLogSegnent Met adat a net adata about the renpte | og segnent.

* @aram startPosition start position of |1og segnment to be read, inclusive.

* @eturn input stream of the requested | og segnment data.

* @hrows RenoteStorageException if there are any errors while fetching the desired segment.

* @hrows Renpt eResour ceNot FoundException the requested | og segnent is not found in the renpte storage.
*/

I nput St ream f et chLogSegnent ( Renot eLogSegnent Met adat a r enot eLogSegnent Met adat a,
int startPosition) throws RenpteStorageException;

/**

* Returns the renpte | og segnent data file/object as InputStreamfor the given {@ink
Renot eLogSegnent Met adat a}

* starting fromthe given startPosition. The streamwi Il end at the smaller of endPosition and the end of
the

* renpte | og segnent data file/object.

* @aram renot eLogSegnent Met adat a net adata about the renpte | og segnent.
* @aram startPosition start position of |og segnment to be read, inclusive.
* @aram endPosi tion end position of |og segnent to be read, inclusive.
* @eturn input streamof the requested | og segnent data.
* @hrows RenoteStorageException if there are any errors while fetching the desired segment.
* @hrows Renot eResour ceNot FoundException the requested | og segnent is not found in the renote storage.
*/
I nput St ream f et chLogSegnent ( Renot eLogSegnent Met adat a r enot eLogSegnent Met adat a,
int startPosition,
int endPosition) throws RenpteStorageException;

* Returns the index for the respective | og segnment of {@ink RenptelLogSegnent Vet adat a}.

* <p>

* |f the index is not present (e.g. Transaction index may not exist because segnents create prior to
* version 2.8.0 will not have transaction index associated with them),

* throws {@ink RenpteResourceNot FoundExcepti on}

* @aram renpt eLogSegnent Met adat a net adata about the renote | og segnent.
* @aram i ndexType type of the index to be fetched for the segnent.
* @eturn input stream of the requested index.
* @hrows RenoteStorageException if there are any errors while fetching the index.
* @hrows Renot eResour ceNot FoundException the requested index is not found in the renote storage.
* The caller of this function are encouraged to re-create the indexes fromthe segnent
* as the suggested way of handling this error.
*/
I nput St ream f et chl ndex( Renpt eLogSegnent Met adat a r enpt eLogSegnent Met adat a,
I ndexType i ndexType) throws RenoteStorageException;

/**

* Del etes the resources associated with the given {@ode renptelLogSegnent Metadata}. Deletion is considered
as

* successful if this call returns successfully without any errors. It will throw {@ink
Renot eSt or ageException} if

* there are any errors in deleting the file.

* <p>

* This operation is expected to be idenpotent. If resources are not found, it is not expected to

* throw { @i nk Renpt eResour ceNot FoundException} as it may be already renoved froma previous attenpt.

*



* @aram renot eLogSegnent Met adat a net adata about the renpte | og segnent to be del eted.
* @hrows RenoteStorageException if there are any storage related errors occurred.
*/
voi d del et eLogSegnent Dat a( Renpt eLogSegnent Met adat a r enot eLogSegnent Met adat a) t hrows Renot eSt or ageExcepti on;
}

package org. apache. kaf ka. conmon;
public class TopicldPartition {

private final UUI D topicld;
private final TopicPartition topicPartition;

public TopicldPartition(UU D topicld, TopicPartition topicPartition) {
oj ects. requi reNonNul | (topicld, "topicld can not be null");
bj ects. requi reNonNul | (topicPartition, "topicPartition can not be null");
this.topicld = topicld;
this.topicPartition = topicPartition;

}

public UUID topicld() {
return topicld;

}

public TopicPartition topicPartition() {
return topicPartition;

}

package org. apache. kaf ka. server. | og. renot e. st or age;
[x

* This represents a universally unique identifier associated to a topic partition's log segnent. This will be

* regenerated for every attenpt of copying a specific |log segnent in {@ink RenpteStorageManager #copyLogSegment
(Renot eLogSegnent Met adat a, LogSegnent Data)}.

*/
public class RenptelLogSegnent|d inplenents Conparabl e<Renot eLogSegnent | d>, Serializable {

private static final long serial VersionUD = 1L;

private final TopicldPartition topicldPartition;
private final UUID id;

publ i ¢ Renot eLogSegnent | d( Topi cldPartition topicldPartition, UUDid) {
this.topicldPartition = requireNonNull (topicldPartition);
this.id = requireNonNull (id);

}

/*-k
* Returns TopicldPartition of this renpte |og segnent.
*
* @eturn
*/
public TopicldPartition topicldPartition() {
return topicldPartition;

}

/**
* Returns Universally Unique Id of this remte | og segnent.
*
* @eturn
*/
public UUID id() {
return id;

}



package org. apache. kaf ka. server.| og. renpt e. st or age;

/**

* |t describes the netadata about the | og segnent in the renote storage.
*/

public class RenptelLogSegnent Met adata i npl enents Serializable {

private static final long serial VersionU D = 1L;

/**
* Universally unique renote | og segnent id.
*/
private final RenotelLogSegnentl|d renptelLogSegnentld;

/**
* Start offset of this segnent.
*/
private final long startOfset;

/*-k
* End offset of this segment.
*/
private final |ong endOffset;

/**
* Leader epoch of the broker.
*/
private final int |eaderEpoch;

/**
* Maxi mum tinmestanp in the segnent
*/

private final |ong maxTi mestanp;

/**

* Epoch tine at which the respective {@ink #state} is set.
*/

private final |ong eventTi nestanp;

/**

* Leader Epoch vs offset for nmessages with in this segnent.
*/

private final Map<int, Long> segnentLeader Epochs;

/**

* Size of the segnent in bytes.

*/

private final int segnentSizel nBytes;

/**

* It indicates the state in which the action is executed on this segnment.
*/

private final RenptelLogSegnentState state;

* @aram renot eLogSegnmentld Universally unique renpte | og segnent id.

* @aramstart O f set Start offset of this segnent.

* @aram endf f set End of fset of this segnent.

* @ar am maxTi mest anp Maxi mum timestanp in this segnent

* @aram | eader Epoch Leader epoch of the broker.

* @ar am event Ti nest anp Epoch tinme at which the renpbte | og segnent is copied to the renpte tier
st or age.

* @aram segnent Si zel nBytes Size of this segnent in bytes.

* @aram state State of the respective segment of renotelLogSegnentld.

* @aram segnment Leader Epochs | eader epochs occurred with in this segnment

*/

publ i c Renot eLogSegnent Met adat a( Renpot eLogSegnent 1 d renot eLogSegnentld, long startOffset, |ong endO fset,
I ong mexTi mestanp, int |eaderEpoch, |ong eventTi nestanp,
int segnentSizel nBytes, RenotelLogSegnentState state, Map<Int, Long>
segnent Leader Epochs) {
t hi s. renot eLogSegnment | d = renpteLogSegnent | d;



this.startOffset = startOffset;
this.endOf fset = endOf f set;
this. | eader Epoch = | eader Epoch;
t hi s. maxTi mest anp = nmaxTi nest anp;
thi s. event Ti nest anp = event Ti nest anp;
t hi s. segnent Leader Epochs = segnent Leader Epochs;
this.state = state;
this.segnent Si zel nBytes = segment Si zel nByt es;
}
/**

* @eturn unique id of this segnent.
*/
publ i ¢ RenotelLogSegrent!|d renptelLogSegnent|d() {
return renotelLogSegnent|d;

}

/**
* @eturn Start offset of this segnent(inclusive).
*/
public long startOffset() {
return start O f set;

}

/**
* @eturn End offset of this segnent(inclusive).
*/
public long endOffset() {
return endO f set;

}

/**
* @eturn Leader or controller epoch of the broker fromwhere this event occurred.
*/
public int brokerEpoch() {
return broker Epoch;

}

/**
* @eturn Epoch time at which this evcent is occurred.
*
/
public long eventTinestanp() {
return event Ti nest anp;

}

/**
* @eturn
*/
public int segnentSizelnBytes() {
return segnent Si zel nByt es;

}

publ i c RenotelLogSegnent State state() {
return state;

}

public | ong maxTi nestanp() {
return nmaxTi nest anp;

}

public Map<lnt, Long> segment Leader Epochs() {
return segment Leader Epochs;

}

package org. apache. kaf ka. server.| og. renpt e. st or age;

public class LogSegnentData {



private final File | ogSegnent;

private final File offsetlndex;

private final File tinelndex;

private final File txnlndex;

private final File producerldSnapshot I ndex;
private final ByteBuffer |eaderEpochlndex;

public LogSegnentData(File |ogSegnent, File offsetlndex, File tinelndex, File txnlndex, File

producer | dSnapshot | ndex,

Byt eBuf f er | eader Epochl ndex) {

this.l ogSegnent = | ogSegnent;

this.of fsetlndex = of fsetl| ndex;

this.tinelndex = tinel ndex;

this.txnlndex = txnlndex;

t hi s. producer | dSnapshot I ndex = producer|dSnapshot | ndex;
t hi s. | eader Epochl ndex = | eader Epochl ndex;

}

public File | ogSegnment () {
return | ogSegnent;

}

public File offsetlndex() {
return of fsetlndex;

}

public File tinelndex() {
return tinelndex;

}

public File txnlndex() {
return txnlndex;

}

public File producerldSnapshot|ndex() {
return producer|dSnapshot | ndex;

}

public ByteBuffer |eaderEpochlndex() {
return | eader Epochl ndex;

}

RemoteLogMetadataManager

‘RemoteLogMetadataManager’ is an interface to provide the lifecycle of metadata about remote log segments with strongly consistent semantics. There is
a default implementation that uses an internal topic. Users can plugin their own implementation if they intend to use another system to store remote log
segment metadata.

RemoteLogMetadataManager

package org. apache. kaf ka. server. | og. renot e. st or age;

* This interface provides storing and fetching renote | og segnment netadata with strongly consistent senantics.
* o <p>

* This class can be plugged in to Kafka cluster by adding the inplenmentation class as

* <code>renot e. | og. met adat a. manager . cl ass. name</ code> property value. There is an inbuilt inplenmentation
backed by

*

*

*

*

*

topic storage in the local cluster. This is used as the default inplenentation if

renot e. | og. met adat a. manager . cl ass. nane i s not configured.

</ p>

<p>

<code>r enot e. | og. net adat a. manager . cl ass. pat h</ code> property is about the class path of the

Renot eLogSt or ageManager

*

inmpl ementation. If specified, the RenptelLogStorageManager inplenmentation and its dependent libraries will be



| oaded

* by a dedi cated classl oader which searches this class path before the Kafka broker class path. The syntax of
this

* paraneter is same with the standard Java class path string.

* </ p>

* <p>

* <code>renot e. | og. net adat a. manager. | i st ener. name</ code> property is about listener nane of the local broker
to which

* it should get connected if needed by RenotelLogMetadataManager inplenmentation. Wen this is configured all
ot her

* required properties can be passed as properties with prefix of 'renote.log.netadata.nanager.!|istener.

* </ p>

* "cluster.id", "broker.id" and all other properties prefixed with "renote.log.metadata." are passed when
* {@ink #configure(Map)} is invoked on this instance.

* o<p>

*/

@nterfaceStability. Evol ving
public interface RenoteLogMet adat aManager extends Configurable, C oseable {

| **

* Asynchronously adds {@i nk RenotelLogSegnent Metadata} with the containing {@ink RenoteLogSegnentld} into
{@i nk RenotelLogMet adat aManager}.

* o<p>

* Renpt eLogSegnent Metadata is identified by RenoteLogSegnentlid and it should have the initial state which
is {@ink RenptelLogSegnent St at e#COPY_SEGVENT_STARTED} .

* o<p>

* {@ink #updat eRenot eLogSegnent Met adat a( Renot eLogSegnent Met adat aUpdat e)} shoul d be used to update an
exi sting RenoteLogSegnent Met adat a.

*

* @aram renot eLogSegnent Met adat a net adata about the renote | og segnent.

* @hrows RenoteStorageException if there are any storage related errors occurred.

* @hrows Il egal Argument Exception if the given netadata instance does not have the state as {@ink
Renpt eLogSegnent St at e#COPY_SEGVENT_STARTED}

* @eturn a Future which will conplete once this operation is finished.

*/

Fut ur e<Voi d> addRenot eLogSegnent Met adat a( Renot eLogSegnent Met adat a r enot eLogSegnent Met adat a) t hr ows
Renot eSt or ageExcepti on;

/**

* This nmethod is used to update the {@ink RenotelLogSegnent Metadata} asynchronously. Currently, it allows
to update with the new

* state based on the life cycle of the segnent. It can go through the below state transitions.

* <p>

* <pre>

* </ pre>

* o<p>

* {@ink RenotelLogSegnent St at e#COPY_SEGVENT_STARTED} - This state indicates that the segment copying to
renote storage is started but not yet finished.

* {@ink RenptelLogSegnent St at e#COPY_SEGVENT_FI Nl SHED} - This state indicates that the segnent copying to
renote storage is finished.

* <br>

* The | eader broker copies the |og segnents to the renpte storage and puts the renote | og segnent netadata
with the

* state as “COPY_SEGQVENT_STARTED’ and updates the state as “COPY_SEGVENT_FI NIl SHED" once the copy is
successful .

* <p></p>



* {@ink RenotelLogSegnent St at e#DELETE_SEGVENT_STARTED} - This state indicates that the segnent deletion is
started but not yet finished.

* {@ink RenotelLogSegnent St at e#DELETE_SEGVENT_FI Nl SHED} - This state indicates that the segment is del eted
successful ly.

* <pr>

* Leader partitions publish both the above del ete segment events when renote log retention is reached for
the

* respective segments. Renote Partition Renpvers al so publish these events when a segnent is deleted as
part of

* the renote partition deletion.

*

* @aram renot eLogSegnent Met adat aUpdat e update of the renpte | og segnent netadat a.

* @hrows RenoteStorageException if there are any storage related errors occurred.

* @hrows RenoteResour ceNot FoundExcepti on when there are no resources associated with the given
renot eLogSegnent Met adat aUpdat e.

* @hrows Il egal Argurment Excepti on if the given netadata instance has the state as {@ink
Renpt eLogSegnent St at e#COPY_SEGMVENT_STARTED}

* @eturn a Future which will conplete once this operation is finished.

*/

Fut ur e<Voi d> updat eRenpt eLogSegnent Met adat a( Renpt eLogSegnent Met adat aUpdat e r enot eLogSegnent Met adat aUpdat e)
t hrows Renot eSt or ageExcepti on;

/**

* Returns {@ink RenoteLogSegnent Metadata} if it exists for the given topic partition containing the
offset with

* the given | eader-epoch for the offset, else returns {@ink Optional #enpty()}.

* @aramtopicldPartition topic partition

* @ar am epochFor O f set | eader epoch for the given offset

* @aram of f set of f set

* @eturn the requested renpte | og segnent netadata if it exists.

* @hrows RenoteStorageException if there are any storage related errors occurred.

*/

Opt i onal <Renot eLogSegnent Met adat a> r enot eLogSegnent Met adat a( Topi cl dPartition topicldPartition,
int epochFor O f set,
I ong of fset)
t hrows Renot eSt or ageExcepti on;

/**

* Returns the highest log offset of topic partition for the given | eader epoch in renpte storage. This is
used by

* renpte | og nmanagenent subsystemto know up to which offset the segments have been copied to renote
storage for

* a given | eader epoch.

*

* @aramtopicldPartition topic partition

* @ar am | eader Epoch | eader epoch

* @eturn the requested highest |1og offset if exists.

* @hrows RenoteStorageException if there are any storage related errors occurred.

*/

Opt i onal <Long> hi ghest O f set For Epoch( Topi cl dPartition topicldPartition,

int | eader Epoch) throws RenpteStorageException;

| **

* This nmethod is used to update the nmetadata about renote partition delete event asynchronously.
Currently, it allows updating the

* state ({@ink RenptePartitionDel eteState}) of a topic partition in renpte netadata storage. Controller
i nvokes

* this method with {@ink RenptePartitionDel eteMetadata} having state as {@i nk
Renot ePartitionDel et eSt at e#DELETE_PARTI TI ON_MARKED} .

* So, renote partition renpvers can act on this event to clean the respective rempte | og segnments of the
partition.

* <p><br>

* |In the case of default RLMMinpl ementation, renote partition renover processes {@ink
Renot ePartiti onDel et eSt at e#DELETE_PARTI TI ON_MARKED}

* <ul >

* <li> sends an event with state as {@ink RenotePartitionDel eteState#DELETE_PARTI TI ON_STARTED}

* <li> gets all the rempte | og segnents and del etes them

* <li> sends an event with state as {@ink RenotePartitionDel eteState#DELETE_PARTI TI ON_FI Nl SHED} once al |
the renpte | og segnments are

* del et ed.



* <ful >

* @aramrenotePartitionDel eteMet adata update on delete state of a partition.
* @hrows RenoteStorageException if there are any storage related errors occurred.
* @hrows Renpt eResour ceNot FoundException when there are no resources associated with the given
renmotePartitionDel et eMet adat a.
* @eturn a Future which will conplete once this operation is finished.
*/
Fut ur e<Voi d> put Renot ePartiti onDel et eMet adat a( Renot ePartiti onDel et eMet adata renotePartiti onDel et eMet adat a)
t hrows Renot eSt or ageExcepti on;

/*-k

* Returns all the renote | og segnent netadata of the given topicldPartition.

* <p>

* Renpte Partition Renovers uses this nethod to fetch all the segnents for a given topic partition, so
that they

* can delete them

*

* @eturn Iterator of all the renpte | og segnent netadata for the given topic partition.

*/

It er at or <Renpt eLogSegrent Met adat a> | i st Renot eLogSegnent s( Topi cl dPartition topicldPartition)

t hrows Renot eSt or ageExcepti on;

/**

* Returns iterator of renote |og segnent netadata, sorted by {@ink RenptelLogSegnment Met adat a#startOffset ()}
in

* ascendi ng order which contains the given | eader epoch. This is used by renpte |og retention managenent
subsystem

* to fetch the segnent netadata for a given | eader epoch.

*

* @aramtopicldPartition topic partition

* @aram | eader Epoch | eader epoch
* @eturn Iterator of renote segnents, sorted by start offset in ascending order.
*/

It er at or <Renot eLogSegrent Met adat a> | i st Renot eLogSegnent s( Topi cl dPartition topicldPartition,
int | eader Epoch) throws RenpteStorageException;

/**
* This nmethod is invoked only when there are changes in | eadership of the topic partitions that this
broker is

* responsible for.
*

* @aram | eaderPartitions partitions that have becone | eaders on this broker.
* @aramfollowerPartitions partitions that have become followers on this broker.
*/
voi d onPartitionLeadershi pChanges(Set <Topi cldPartition> |eaderPartitions,
Set <Topi cl dPartition> foll owerPartitions);

| **

* This nmethod is invoked only when the topic partitions are stopped on this broker. This can happen when a
* partition is emgrated to other broker or a partition is deleted.

*
* @arampartitions topic partitions that have been stopped.
*/

voi d onStopPartitions(Set<TopicldPartition> partitions);

}

package org. apache. kaf ka. server.| og. renpt e. st or age;

Jx
* |t describes the netadata about the | og segnent in the renote storage.
*/

public class RenotelLogSegment Met adat aUpdat e inplements Serializable {

private static final long serial VersionUD = 1L;

/**
* Universally unique renpte | og segnent id.
*/
private final RenotelLogSegnentl|d renptelLogSegnentld;

| **



* Epoch tine at which the respective {@ink #state} is set.
*/
private final |ong eventTi mestanp;

/**

* Leader epoch of the broker fromwhere this event occurred.
*/

private final int |eaderEpoch;

| **

* It indicates the state in which the action is executed on this segnent.
*/
private final RenotelLogSegnentState state;

| **

* @aram renot eLogSegnentld Universally unique renpte | og segnent id.

* @aram event Ti mest anp Epoch time at which the renpte | og segnent is copied to the renpte tier
st or age.

* @aram | eader Epoch Leader epoch of the broker fromwhere this event occurred.

* (@aram state state of the renote | og segnent.

*/

publ i c Renot eLogSegnent Met adat aUpdat e( Renot eLogSegnent | d renpt eLogSegnent | d,

| ong event Ti nest anp,
int | eader Epoch,
Renot eLogSegnent State state) {

thi s. renot eLogSegnment | d = renpteLogSegnent | d;

thi s. event Ti nest anp = event Ti nest anp;

this. | eader Epoch = | eader Epoch;

this.state = state;

}

publ i c RenoteLogSegnent!d renoteLogSegnent|d() {
return renotelLogSegnent|d;

}

public long createdTi mestanp() {
return event Ti mest anp;

}

publ i c RenptelLogSegnentState state() {
return state;

}

public int |eaderEpoch() {
return | eader Epoch;

}
package org. apache. kaf ka. server. | og. renot e. st or age;
publ ic class RenptePartitionDel eteMetadata {

private final TopicldPartition topicPartition;
private final RenptePartitionDel eteState state;
private final |ong eventTi nmestanp;

private final int epoch;

public RenotePartitionDel eteMetadata(TopicldPartition topicPartition, RenptePartitionDeleteState state,

long event Ti mestanp, int epoch) {

oj ects. requi reNonNul | (topi cPartition);

oj ects. requi reNonNul | (state);

if(state !'= RenptePartitionDel eteState. DELETE_PARTI TI ON_MARKED && state != RenptePartitionDel eteState.
DELETE_PARTI TI ON_STARTED

&% state != RenptePartitionDel et eState. DELETE_PARTI TI ON_FI Nl SHED) {
throw new Il | egal Argurment Exception("state shoul d be one of the delete partition states");

}

this.topicPartition = topicPartition;

this.state = state;

thi s. event Ti nest anp = event Ti nest anp;

thi s. epoch = epoch;



}

public TopicldPartition topicPartition() {
return topicPartition;

}

public RenotePartitionDel eteState state() {
return state;

}

public |ong eventTinestanp() {
return event Ti mest anp;

}

public int epoch() {
return epoch;

}

package org. apache. kaf ka. server. | og. renot e. st or age;

/**

* It indicates the deletion state of the renpte topic partition. This will be based on the action executed on
this

* partition by the renpte |og service inplenentation.

* <p>

*/

public enum RenotePartitionDel eteState {

| **

* This is used when a topic/partition is deleted by controller.

* This partition is marked for delete by controller. That nmeans, all its renpte |og segnents are eligible
for

* deletion so that renote partition renpvers can start deleting them

*/

DELETE_PARTI TI ON_MARKED( ( byt e) 0),

/**

* This state indicates that the partition deletion is started but not yet finished.
*/

DELETE_PARTI TI ON_STARTED( (byte) 1),

/**
* This state indicates that the partition is del eted successfully.
*/

DELETE_PARTI TI ON_FI NI SHED( (byte) 2);

private static final Map<Byte, RenptePartitionDel eteState> STATE_TYPES = Col | ecti ons. unnodi fi abl eMap(
Arrays. strean(val ues()).coll ect(Collectors.toMap(RenotePartitionDel eteState::id, Function.
identity())));

private final byte id;

Renpt ePartitionDel eteState(byte id) {
this.id =id;

}

public byte id() {
return id;

}

public static RenptePartitionDel eteState forld(byte id) {
return STATE_TYPES. get (i d);
}

package org. apache. kaf ka. server. | og. renot e. st or age;



/**

* It indicates the state of the renote | og segment. This will be based on the action executed on this
* segnment by the renpte |og service inplenentation.

* <p>

*/

publ i ¢ enum Renot eLogSegnent State {

/**

* This state indicates that the segment copying to renpte storage is started but not yet finished.
*/

COPY_SEGVENT_STARTED( ( byt e) 0),

/**

* This state indicates that the segment copying to rempte storage is finished.
*/

COPY_SEGVENT_FI NI SHED( (byte) 1),

/**
* This state indicates that the segment deletion is started but not yet finished.
*/

DELETE_SEGVENT_STARTED( (byte) 2),

| *x*

* This state indicates that the segnent is deleted successfully.
*/
DELETE_SEGVENT_FI NI SHED( (byte) 3),

private static final Map<Byte, RenptelLogSegnent State> STATE _TYPES = Col | ecti ons. unnodi fi abl eMap(
Arrays. strean{val ues()).collect(Collectors.toMap(RenptelLogSegnentState::id, Function.identity())));

private final byte id;

Renot eLogSegnent St at e(byte id) {
this.id = id;

}

public byte id() {
return id;

}

public static RenoteLogSegnentState forld(byte id) {
return STATE_TYPES. get (id);

}

New Metrics

The following new metrics will be added:

MBean description

kafka.server:type=BrokerTopicMetrics, name=RemoteReadRequestsPerSec, topic=([-.w] Number of remote storage read requests per second.
+)

kafka.server:type=BrokerTopicMetrics, name=RemoteBytesInPerSec, topic=([-.w]+) Number of bytes read from remote storage per second.
kafka.server:type=BrokerTopicMetrics, name=RemoteReadErrorPerSec, topic=([-.w]+) Number of remote storage read errors per second.
kafka.log.remote:type=RemoteStorageThreadPool, Number of remote storage read tasks pending for
name=RemoteLogReaderTaskQueueSize execution.
kafka.log.remote:type=RemoteStorageThreadPool, Average idle percent of the remote storage reader thread
name=RemoteLogReaderAvgldlePercent pool.

kafka.log.remote:type=RemoteLogManager, Average idle percent of RemoteLogManager thread pool.

name=RemoteLogManagerTasksAvgldlePercent



kafka.server:type=BrokerTopicMetrics, name=RemoteBytesOutPerSec, topic=([-.w]+) Number of bytes copied to remote storage per second.

kafka.server:type=BrokerTopicMetrics, name=RemoteWriteErrorPerSec, topic=([-.w]+) Number of remote storage write errors per second.

Some of these metrics have been updated with new names as part of KIP-930

Upgrade

Follow the steps mentioned in Kafka upgrade to reach the state where all brokers are running on the latest binaries with the respective "inter.broker.
protocol" and "log.message.format" versions. Tiered storage requires the message format to be > 0.11.

To enable tiered storage subsytems, a rolling restart should be done by enabling "remote.log.storage.system.enable" on all brokers.

You can enable tiered storage by setting “remote.storage.enable” to true on the desired topics. Before enabling tiered storage, you should make sure the
producer snapshots are built for all the segments for that topic in all followers. You should wait till the log retention occurs for all the segments so that all
the segments have producer snapshots. Because follower replicas for topics with tier storage enabled, need the respective producer snapshot for each
segment for reconciling the state as mentioned in the earlier follower fetch protocol section.

Downgrade

Downgrade to earlier versions(> 2.1) is possible but the data available only on remote storage will not be available. There will be a few files that are
created in remote index cache directory($log.dir/remote-log-index-cache) and other remote log segment metadata cache files that need to be cleaned up
by the user. We may provide a script to cleanup the cache files created by tiered storage.Users have to manually delete the data in remote storage based
on the bucket or dir configured with tiered storage.

Limitations

® Once tier storage is enabled for a topic, it can not be disabled. We will add this feature in future versions. One possible workaround is to create a
new topic and copy the data from the desired offset and delete the old topic. Another possible work around is to set the log.local.retention.ms
same as retention.ms and wait until the local retention catches up until complete log retention. This will make the complete data available locally.
After that, set remote.storage.enable as false to disable tiered storage on a topic.

® Multiple Log dirs on a broker are not supported (JBOD related features).

® Tiered storage is not supported for compacted topics.

Integration and System tests

For integration tests, we use file based(LocalTieredStorage) RemoteStorageManager(RSM) . For system tests, we plan to have a single node HDFS
cluster in one of the containers and use HDFS RSM implementation.

Feature Test

Feature test cases and test results are documented in this google spreadsheet.

Performance Test Results

We have tested the performance of the initial implementation of this proposal.
The cluster configuration:

. 5 brokers

20 CPU cores, 256GB RAM (each broker)

2TB * 22 hard disks in RAIDO (each broker)

. Hardware RAID card with NV-memory write cache
20Gbps network

. sShappy compression

. 6300 topic-partitions with 3 replicas

. remote storage uses HDFS

ONOUTAWN P

Each test case is tested under 2 types of workload (acks=all and acks=1)

Workload-1 Workload-2
(at-least-once, acks=all) (acks=1)
Producers 10 producers 10 producers
30MB / sec / broker (leader) 55MB / sec / broker (leader)

~62K messages / sec / broker (leader) = ~120K messages / sec / broker (leader)


https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-930%3A+Rename+ambiguous+Tiered+Storage+Metrics
https://kafka.apache.org/documentation/#upgrade
https://docs.google.com/spreadsheets/d/1XhNJqjzwXvMCcAOhEH0sSXU6RTvyoSf93DHF-YMfGLk/edit?usp=sharing

In-sync Consumers = 10 consumers 10 consumers
120MB / sec / broker 220MB / sec / broker

~250K messages / sec / broker ~480K messages / sec / broker

Test case 1 (Normal case):

Normal traffic as described above.

with tiered storage without tiered storage
Workload-1 Avg P99 produce latency = 25ms 21ms
(acks=all, low traffic) = Avg P95 produce latency = 14ms 13ms
Workload-2 Avg P99 produce latency = 9ms Ims
(acks=1, high traffic) = Avg P95 produce latency = 4ms 4ms

We can see there is a little overhead when tiered storage is turned on. This is expected, as the brokers have to ship segments to remote storage, and sync
the remote segment metadata between brokers. With at-least-once (acks=all) produce, the produce latency is slightly increased when tiered storage is
turned on. With acks=1 produce, the produce latency is almost not changed when tiered storage is turned on.

Test case 2 (out-of-sync consumers catching up):
In addition to the normal traffic, 9 out-of-sync consumers consume 180MB/s per broker (or 900MB/s in total) old data.

With tiered storage, the old data is read from HDFS. Without tiered storage, the old data is read from local disk.

with tiered storage without tiered storage

Workload-1 Avg P99 produce latency = 42ms 60ms
(acks=all, low traffic) = Avg P95 produce latency = 18ms 30ms
Workload-2 Avg P99 produce latency = 10ms 10ms
(acks=1, high traffic) = Avg P95 produce latency = 5ms 4ms

Consuming old data has a significant performance impact to acks=all producers. Without tiered storage, the P99 produce latency is almost ~1.5 times.
With tiered storage, the performance impact is relatively lower, because remote storage reading does not compete with the local hard disk bandwidth with
produce requests.

Consuming old data has little impact to acks=1 producers.

Test case 3 (rebuild broker):

Under the normal traffic, stop a broker, remove all the local data, and rebuild it without replication throttling. This case simulates replacing a broken broker
server.

with tiered storage without tiered storage

Workload-1 Max avg P99 produce latency | 56ms 490ms
(acks=all, Max avg P95 produce latency | 23ms 290ms
12TB data per broker) | Duration 2min 230min
Workload-2 Max avg P99 produce latency = 12ms 10ms
(acks=1, Max avg P95 produce latency = 6ms 5ms
34TB data per broker) = Duration 4min 520min

With tiered storage, the rebuilding broker only needs to fetch the latest data that has not been shipped to remote storage. Without tiered storage, the
rebuilt broker has to fetch all the data that has not expired from the other brokers. With the same log retention time, tiered storage reduced the rebuilding
time by more than 100 times.

Without tiered storage, the rebuilding broker has to read a large amount of data from the local hard disks of the leaders. This competes for page cache and
local disk bandwidth with the normal traffic and dramatically increases the acks=all produce latency.

Future work

® Enhance RLMM local file-based cache with RocksDB to avoid loading the whole cache inmemory.



Enhance RLMM implementation based on topic based storage pointing to a target Kafka cluster instead of using a system level topic within the
cluster.
Improve default RLMM implementation with a less chatty protocol.
Support disabling tiered storage for a topic.
Add a system level config to enable tiered storage for all the topics in a cluster.
Recovery mechanism in case of the broker or cluster failure.
® This is to be done by fetching the remote log metadata from RemoteStorageManager.
Recovering from remote log metadata topic partitions truncation
Extract RPMM as a separate task and allow any RLMM implementation to reuse the task for deletion of remote segments and complete the
remote partition deletion.

Alternatives considered

Following alternatives were considered:

1.

Replace all local storage with remote storage - Instead of using local storage on Kafka brokers, only remote storage is used for storing log
segments and offset index files. While this has the benefits related to reducing the local storage, it has the problem of not leveraging the OS page
cache and local disk for efficient latest reads as done in Kafka today.

. Implement Kafka API on another store - This is an approach that is taken by some vendors where Kafka API is implemented on a different

distributed, scalable storage (example HDFS). Such an option does not leverage Kafka other than APl compliance and requires the much riskier
option of replacing the entire Kafka cluster with another system.

. Client directly reads remote log segments from the remote storage - The log segments on the remote storage can be directly read by the client

instead of serving it from Kafka broker. This reduces Kafka broker changes and has the benefits of removing an extra hop. However, this
bypasses Kafka security completely, increases Kafka client library complexity and footprint, causes compatibility issues to the existing Kafka client
libraries, and hence is not considered.

. Store all remote segment metadata in remote storage. This approach works with the storage systems that provide strong consistent metadata,

such as HDFS, but does not work with S3 and GCS. Frequently calling LIST API on S3 or GCS also incurs huge costs. So, we choose to store
metadata in a Kafka topic in the default implementation but allow users to use other methods with their own RLMM implementations.

. Cache all remote log indexes in local storage. Store remote log segment information in local storage.

RemoteTimelndex RemoteOffsetindex
RemoteLoglndex
[T\meslamp Offset | [ Offset Position | (... FirstOffset [ ... FirstTimestamp ... RDI
1553204124 | 205000 200100 100 ...| 200070 |...| 1553100000 |...| /topic1-2/000020000.l0g:1500
1553500032 | 205100 200200 160
205000 220 ...| 205000 |...| 1553500000 |...| /topic1-2/000045000.l09:6000
Local Disk

Remote Storage

/topic1-2/000020000.log /topic1-2/000032000.log Jtopic1-2/000045000.log
RecordBatches RecordBatches RecordBatches
o
X
Meeting Notes
23 Mar 2021
(Notes by Kowshik)
® Discussion:
© Discussed implementation of highestLogOffset and listAllRemoteLogSegments methods in KIP-405 PR: https://github.com/apache/kafka
o :é)iitl:/ul%)szeldiaimplementation of state transition validation checks in RemoteLogSegmentState and cases where the source state can still
e null.

o Discussed Log layer refactor and the plan to extract the recovery logic out of the Log layer in a separate PR.
Follow-ups:


https://cwiki-test.apache.org/confluence/display/~kprakasam
https://github.com/apache/kafka/pull/10218
https://github.com/apache/kafka/pull/10218

o O O

09 Feb 2021

* Notes
o]

[e]

Satish to look into review comments on https://github.com/apache/kafka/pull/10218. Jun/Kowshik to review the PR whenever it is ready
again.

Satish to raise PR addressing last batch of review comments on the interface PR: https://github.com/apache/kafka/pull/10173.

Kowshik to continue working on recovery logic refactor and Log layer refactor.

(Done) Kowshik to update the external facing Log layer refactor proposal doc with details about the recovery logic refactor: https://docs.
google.com/document/d/1dQJLAMCwqQJISPmMZkVmVzshFZKuFy_bCPtubav4wBfHQ/edit# .

Discussed the downgrade path, KIP will be updated with that.
Discussed the limitation of not allowing disable tiered storage on a topic.

o All are agreed that KIP is ready for voting.

26 Jan 2021

* Notes

© Discussed the latest review comments from the mail thread.

12 Jan 2021

* Notes
o]

o]

15 Dec 2020

* Notes
o]

[e]

08 Dec 2020

Manikumar will review and provide comments.

Satish discussed the edge cases around upgrade path with KIP-516 updates. Jun clarified on how topic-id is received after IBP is
udpated on all brokers.

Jun suggested to update the KIP with more details on Remote Partition Remover.

RLMM flat file format was discussed and Jun asked to clarify the header section.

Kowshik and Jun will provide Log layer refactoring writeup.

Discussed producer snapshot fix missing in 2.7

Satish discussed memory growth due to RLMM cache and it looks to be practically negligible. The proposal is to use inmemory cache
and checkpoint that to disk.

Satish will update the KIP with Upgrade path.

Kowshik and Jun will look into LOg refactoring.

® Discussion Recording

* Notes

1. Tiered storage upgrade path dicussion:

[e]
[e]
[e]
[e]
[e]

Details need to be documented in the KIP.

Current upgrade path plan is based on IBP bump.

Enabling of the remote log components may not mean all topics are eligible for tiering at the same time.
Should tiered storage be enabled on all brokers before enabling it on any brokers?

Is there any replication path dependency for enabling tiered storage?

2. RLMM persistence format:

[e]
[e]

We agreed to document the persistence format for the materialized state of default RLMM implementation (topic-based).
(carry over from earlier discussion) For the file-based design, we don't know yet the % of increase in memory, assuming the majority of
segments are in remote storage. It will be useful to document an estimation for this.

3. Topic deletion lifecycle discussion:

[e]

Under topic deletion lifecycle, step (4) it would be useful to mention how the RemotePartitionRemover (RPRM) gets the list of segments
to be deleted, and whether it has any dependency with the RLMM topic.

4. Log layer discussion:

[e]
[e]

[e]

We discussed the complexities surrounding making code changes to Log layer (Log.scala).

Today, the Log class holds attributes and behavior related with local log. In the future, we would have to change the Log layer such that
it would also contain the logic for the tiered portion of the log. This addition can pose a maintenance challenge.

Some of the existing attributes in the Log layer such as LeaderEpochCache and ProducerStateManager can be related with global view
of the log too (i.e. global log is local log + tiered log). It can be therefore useful to think about preparatory refactoring, to see whether we
can separate responsibilities related with the local log from the tiered log, and, perhaps provide a global view of the log that combines
together both as and when required. The global view of the log could manage the lifecycle of LeaderEpochCache and
ProducerStateManager.

Follow-ups:

[e]

KIP-405 updates (upgrade path, RLMM file format and topic deletion)


https://github.com/apache/kafka/pull/10218
https://github.com/apache/kafka/pull/10173
https://docs.google.com/document/d/1dQJL4MCwqQJSPmZkVmVzshFZKuFy_bCPtubav4wBfHQ/edit
https://docs.google.com/document/d/1dQJL4MCwqQJSPmZkVmVzshFZKuFy_bCPtubav4wBfHQ/edit
https://drive.google.com/file/d/1cOLh9JH31nutw52fd4wcnDPtXut1lgO3/view?usp=sharing

© Log layer changes

(Notes taken by Kowshik)

01 Dec 2020

® Discussion Recording
®* Notes
® Satish discussed KIP-405 updates:

. Addressed some of the outstanding review comments from previous weeks.
. Remote log manager (RLM) cache configuration was added.
. Updated default values in the KIP for certain configuration parameters.
. RLMM committed offsets are stored in separate files.
. Initial version: go ahead with in-memory RLMM materializer implementation for now. Future switch to RocksDB seems feasible since it is
an internal change only to RLMM cache.
. Yet to update the KIP with KIP-516 (topic ID) changes.
. Tiered storage upgrade path details are a work-in-progress. Will be added to the KIP.
RLMM cache choice: RocksDB-based vs file-based:
. Harsha/Satish didn't see significant improvement in performance when they tried RocksDB in their prototype.
. Other advantages of RocksDB were discussed - snapshots, tooling, checksums etc.
. As for file-based design, we don't know yet the % of increase in memory, assuming the majority of segments are in remote storage.
. Currently a single file-based implementation for the whole broker is considered. But this may have some issues, so it can be useful to
consider a file per partition.
5. More details needed to be added to the KIP on file management, metadata operations, persisted data format and estimates on memory
usage.
Topic ID:
1. KIP-516 PR may land by end of the year, so we should be able to use it in KIP-405.
2. Satish to update KIP with details.
(Notes taken by Kowshik)

~N o abhwnNPE

A WN P

10 Nov 2020

® Discussion Recording
* Notes

29 Sep 2020

® Discussion Recording
* Notes

© Discussed that we can have producerid snapshot for each log segment which will be copied to remote storage. There is already a PR

for KAFKA-9393 which addresses similar requirements.
© Discussed on a case when the local data is not available on brokers, whether it is possible to recover the state from remote storage.
© We will update the KIP by early next week with
" Topic deletion design proposed/discussed in the earlier meeting. This includes the schemas of remote log segment metadata

events stored in the topic.
Producerid snapshot for each segment discussion.
ListOffsets API version bump to support offset for the earliest local timestamp.
Justifying the rationale behind keeping RLMM and local leader epoch as the source of truth.
Rocks DB instances as cache for remote log segment metadata.
Any other missing updates planned earlier.

15 Sep 2020

® Discussion Recording
* Notes
© Discussed the proposed topic deletion lifecycle with and without KIP-516.
= We will update the KIP with the design details.
= Jun mentioned that KIP-516 will be available in 3.0 and we can go with the design assuming Topicld support.
© Discussed on remote log metadata truncation and losing the data of Kafka brokers local storage.

= We will update KIP on possible approaches and add any possible APIs needed for RemtoeStorageManager(low Priority for
now).

01 Sep 2020

® Discussion Recording
* Notes
© Topic deletion lifecycle
" Have a separate section
" Discuss handling deletions when there is no leader.
= Describe the approaches with and without KIP-516 support.
© Describe more on how are duplicate log segments in remote storage are handled. This is partly covered in example scenarios but good
to describe them in the details section.
© Discuss more on remote log segment metadata topic truncation.
© Remote log segment metadata topic event format
= the event change log approach instead of having an effective event as a message.


https://drive.google.com/file/d/1dqS4OMBH6XLNz_f2ynP8vjgD83Ggo_pe/view?usp=sharing
https://drive.google.com/file/d/1sVLxqV6Gwosg30BQutlC6X_0X4qhB3Pb/view?usp=sharing
https://drive.google.com/file/d/1ynlCSCxLRmQRpi-QqK-8KWJQmPQY1DYY/view?usp=sharing
https://drive.google.com/file/d/1YRPR71rLVbajUVUSDyD4dYWw0lMUDReG/view?usp=sharing
https://drive.google.com/file/d/1R1w7qNsnFBkBTJ2fMnmBCXSZo4UWmqpA/view?usp=sharing

© Behaviour of APIs with remote storage errors.
25 Aug 2020

® Discussion Recording
* Notes
o KIP is updated with follower fetch protocol and ready to reviewed
© Satish to capture schema of internal metadata topic in the KIP
© We will update the KIP with details of different cases
O Test plan will be captured in a doc and will add to the KIP
© Add a section "Limitations" to capture the capabilities that will be introduced with this KIP and what will not be covered in this KIP.

Other associated KIPs

KIP-852: Optimize calculation of size for log in remote tier

KIP-917: Additional custom metadata for remote log segment


https://drive.google.com/file/d/14PRM7U0OopOOrJR197VlqvRX5SXNtmKj/view?usp=sharing
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-852%3A+Optimize+calculation+of+size+for+log+in+remote+tier
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-917%3A+Additional+custom+metadata+for+remote+log+segment

	KIP-405: Kafka Tiered Storage

