
KIP-515: Enable ZK client to use the new TLS supported
authentication

Status
Motivation

ZooKeeper TLS Functionality
Brokers
CLI Tools
Goals
Out of Scope

Public Interfaces
New Broker and AclAuthorizer Configurations
ZooKeeper Security Migration CLI
Config Command CLI
ACL Command CLI
ZooKeeper Shell CLI

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

ZooKeeper-Style Configuration Names
Inheriting Broker Configuration Values
Requiring All Authorizer Prefixed TLS Configs
zookeeper.ssl.hostname.verifiction.enable
zookeeper.ssl.context.supplier.class

Status
Current state: "Adopted" (in version 2.5)

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

ZooKeeper TLS Functionality

Since the merge KAFKA-8634 (https://github.com/apache/kafka/commit/d67495d6a7f4c5f7e8736a25d6a11a1c1bef8d87) in trunk, Apache Kafka ships
with Apache Zookeeper supporting TLS and Dynamic Reconfiguration (AK 2.4 ultimately shipped with ZooKeeper version 3.5.6 rather than 3.5.5, but the
general functionality is the same). When doing a deployment in a security-minded environment the desire is to use TLS to encrypt communication in
transit.

Note that the current version of ZooKeeper (3.5.6 as of this writing and the version shipped with Apache Kafka 2.4) only supports certificate mutual
authentication. There is a sever-side config " " that the ZooKeeper code recognizes (case-insensitively: / / are the valid ssl.clientAuth want need none

 options), but this config has no effect in 3.5.6 (). This is fixed in version 3.5.7,

which is the ZooKeeper version that will ship with Apache Kafka version 2.5.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/519d07e607cf6598a8126139c964d31fa46f2c028b88b1d44086b8a9@%3Cdev.kafka.apache.org%3E
https://github.com/apache/kafka/commit/d67495d6a7f4c5f7e8736a25d6a11a1c1bef8d87

1.
2.
3.
4.

Note also that ZooKeeper will associate multiple identities with any session that successfully authenticates multiple ways (e.g. both client certificate and
SASL). The X.509 identity is the full Distinguished Name from the client's certificate, and this can be changed (i.e. use just a part of the DN) only by
implementing and using a custom ZooKeeper authentication provider that overrides the method protected String getClientId
(X509Certificate clientCert). A client that accesses an ACL-protected is authorized if it has at least 1 of the identities present in any Znode
authorizing ACL.

ZooKeeper also supports TLS connectivity between ZK nodes for Quorum-related communication. This is configured independent of Kafka within
ZooKeeper.

It is possible to enable TLS connectivity to Zookeeper from Apache Kafka 2.4 -- the problem is that configuration information has to be passed via system
properties as -D command line options on the Java invocation of the broker or CLI tool (e.g. ZooKeeper Security Migration), and such -D command line
options are not secure because anyone with access to the box can see the command line used to start the process; the configuration includes sensitive
keystore/truststore password information, so we need a secure mechanism for passing the configuration values. The motivation for this KIP is to harden
/secure the configuration mechanism for Zookeeper TLS connectivity.

With this KIP we aim to introduce the necessary changes to enable the use of secure configuration values when defining TLS encrypted channels for
communications with Zookeeper. These changes will enable the secure use of TLS from brokers as well as any CLI tools that require it in the next AK (AK
2.5) release.

Brokers

Brokers talk to ZooKeeper, of course. In addition, the class talks directly to ZooKeeper and supports kafka.security.authorizer.AclAuthorizer
being pointed to a separate ZooKeeper quorum, so it must be possible to configure that ZooKeeper connection for TLS as well. Note that kafka.

 was deprecated in AK 2.4 (in favor of) and will not support TLS connectivity to ZooKeeper.security.auth.SimpleAclAuthorizer AclAuthorizer

CLI Tools

The list of CLI tools that used non-deprecated direct ZooKeeper access in the AK (AK 2.4) release was as follows:previous

 ()zookeeper-security-migration.sh kafka.admin.ZSecurityMigrator
 ()kafka-reassign-partitions.{bat,sh} kafka.admin.ReassignPartitionsCommand

 ()kafka-configs.{bat,sh} kafka.admin.ConfigCommand
bat,sh}zookeeper-shell.{

It doesn't make sense to address direct ZK access in #1 since connecting to ZooKeeper and applying/removing ZooKeeper ACLs is the whole point of the
tool. (In theory we could replace its direct ZK access in favor of a Kafka API, but that seems silly.)

Direct ZK access in #2 above is being addressed via the already-accepted , and the direct KIP-455: Create an Administrative API for Replica Reassignment
access flag will be deprecated via . Therefore no changes are required here.KIP-555: Deprecate Direct Zookeeper access in Kafka Administrative Tools

Direct ZK access in #3 has already been replaced via a flag and will be deprecated in the next release via KIP-555 as well. A --bootstrap-server
comment in the code at https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/admin/ConfigCommand.scala#L65) indicates that connecting
directly to ZooKeeper with this CLI tool is still a supported use case when configuration information needs to be bootstrapped into a ZooKeeper quorum
prior to starting Kafka. This is a very special use case for sure, but it does mean that accessing ZooKeeper directly via this CLI tool will be required, and
passing TLS configuration to it in a secured way will be necessary.

Direct ZooKeeper access is the whole point of #4, of course, but the ZooKeeper project does not yet provide functionality to pass secured TLS configs to
the underlying class that we invoke from this shell script – org.apache.zookeper.ZooKeeperMain – as described in

 . We will need to add it.

 is an additional CLI tool not in the above list that supports bootstrapping information into ()kafka-acls.{bat,sh} kafka.admin.AclCommand
ZooKeeper. Direct ZooKeeper access has been deprecated in the ACLs CLI tool for some time, but it is still required for this special use case, and passing
TLS configuration in a secured way will be necessary.

Goals

Harden/secure the configuration mechanism for Zookeeper TLS connectivity from:
Kafka Brokers (including from if/when configured)kafka.security.authorizer.AclAuthorizer
zookeeper-security-migration.sh

 and kafka-configs.{bat,sh} kafka-acls.{bat,sh}
zookeeper-shell.{bat,sh}

Support client certificate authentication to ZooKeeper both with and without SASL authentication in ZK Security Migrator and the broker (when zoo
 is true).keeper.set.acl

Add system tests to confirm the hardened/secured configuration for TLS connectivity to ZooKeeper
Add explicit Kafka documentation on how to configure TLS connectivity to ZooKeeper – both mutual TLS and encryption-only
Add a reference in the Kafka documentation to the ZooKeeper Quorum TLS configuration (https://zookeeper.apache.org/doc/r3.5.7

)/zookeeperAdmin.html#Communication+using+the+Netty+framework

 Unable to render Jira issues macro, execution

error.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-455%3A+Create+an+Administrative+API+for+Replica+Reassignment
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-555%3A+Deprecate+Direct+Zookeeper+access+in+Kafka+Administrative+Tools
https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/admin/ConfigCommand.scala#L65
https://zookeeper.apache.org/doc/r3.5.7/zookeeperAdmin.html#Communication+using+the+Netty+framework
https://zookeeper.apache.org/doc/r3.5.7/zookeeperAdmin.html#Communication+using+the+Netty+framework

Out of Scope

Zookeeper-to-Zookeeper Quorum TLS system tests and in-depth documentation (the ZooKeeper project already has such tests and
documentation)
Dynamic reconfiguration of ZooKeeper TLS configs

Public Interfaces

New Broker and AclAuthorizer Configurations

The below table contains the complete list of added configs. All configs being added are optional Strings with no default value unless otherwise
noted. These values are potentially required to access ZooKeeper in the first place, so they are not dynamically reconfigurable (dynamic reconfiguration
values are currently stored in ZooKeeper). Sensitive values (e.g. those of type) can be encrypted as described in Password KIP-421: Automatically
resolve external configurations.

As an example, these are some of the configs that will be introduced:

zookeeper.ssl.client.enable=true
zookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty
zookeeper.ssl.keystore.location=kafka.jks
zookeeper.ssl.keystore.password=test1234
zookeeper.ssl.truststore.location=truststore.jks
zookeeper.ssl.truststore.password=test1234

Every config can be prefixed with " "authorizer. for the case when requires a different TLS kafka.security.authorizer.AclAuthorizer
configuration when connecting to ZooKeeper. Each can config can be individually prefixed at will, and any prefixed config will override the corresponding
Kafka config value.

Config Key Documentation

zookeeper.
ssl.client.
enable

Optional
Boolean,
default=fal
se

Set client to use TLS when connecting to ZooKeeper. An explicit value overrides any value set via the <code>zookeeper.client.
secure</code> system property (note the different name). Defaults to false if neither is set; when true, <code>zookeeper.
clientCnxnSocket</code> must be set (typically to <code>org.apache.zookeeper.ClientCnxnSocketNetty</code>); other values to set
may include <include list of all other properties below>

zookeeper.
clientCnxnS
ocket

Typically set to <code>org.apache.zookeeper.ClientCnxnSocketNetty</code> when using TLS connectivity to ZooKeeper. Overrides
any explicit value set via the same-named <code>zookeeper.clientCnxnSocket</code> system property.

zookeeper.
ssl.
keystore.
location

Keystore location when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides any explicit value set via the
<code>zookeeper.ssl.keyStore.location</code> system property (note the camelCase).

zookeeper.
ssl.
keystore.
password

Optional
Password

Keystore password when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides any explicit value set via the
<code>zookeeper.ssl.keyStore.password</code> system property (note the camelCase). Note that ZooKeeper does not support a
<code>key</code> password different from the <code>keystore</code> password, so be sure to set the key password in the keystore
to be identical to the keystore password; otherwise the connection attempt to Zookeeper will fail.

zookeeper.
ssl.
keystore.
type

Keystore type when using a client-side certificate with TLS connectivity to ZooKeeper. Overrides any explicit value set via the
<code>zookeeper.ssl.keyStore.type</code> system property (note the camelCase). The default value of <code>null</code> means

.the type will be auto-detected based on the filename extension of the keystore

zookeeper.
ssl.
truststore.
location

Truststore location when using TLS connectivity to ZooKeeper. Overrides any explicit value set via the <code>zookeeper.ssl.
trustStore.location</code> system property (note the camelCase).

zookeeper.
ssl.
truststore.
password

Optional
Password

Truststore password when using TLS connectivity to ZooKeeper. Overrides any explicit value set via the <code>zookeeper.ssl.
trustStore.password</code> system property (note the camelCase).

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=100829515
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=100829515

zookeeper.
ssl.
truststore.
type

Truststore type when using TLS connectivity to ZooKeeper. Overrides any explicit value set via the <code>zookeeper.ssl.trustStore.
type</code> system property (note the camelCase). The default value of <code>null</code> means the type will be auto-detected
based on the filename extension of the truststore.

zookeeper.
ssl.
protocol

Default=TLS
v1.2

Specifies the protocol to be used in ZooKeeper TLS negotiation. An explicit value overrides any value set via the same-named
<code>zookeeper.ssl.protocol</code> system property.

zookeeper.
ssl.
enabled.
protocols

Specifies the enabled protocol(s) in ZooKeeper TLS negotiation (csv). Overrides any explicit value set via the <code>zookeeper.ssl.
enabledProtocols</code> system property (note the camelCase). The default value of <code>null</code> means the enabled

.protocol will be the value of the <code>zookeeper.ssl.protocol</code> configuration property

zookeeper.
ssl.cipher.
suites

Specifies the enabled cipher suites to be used in ZooKeeper TLS negotiation (csv). Overrides any explicit value set via the
<code>zookeeper.ssl.ciphersuites</code> system property (note the single word "ciphersuites"). The default value of <code>null<
/code> means the list of enabled cipher suites is determined by the Java runtime being used.

zookeeper.
ssl.
endpoint.
identificat
ion.
algorithm

Default=htt
ps

Specifies whether to enable hostname verification in the ZooKeeper TLS negotiation process, with (case-insensitively) "https"
meaning ZooKeeper hostname verification is enabled and an explicit blank value meaning it is disabled (disabling it is only
recommended for testing purposes). An explicit value overrides any "true" or "false" value set via the <code>zookeeper.ssl.
hostnameVerification</code> system property (note the different name and values; true implies https and false implies blank).

zookeeper.
ssl.crl.
enable

Optional
Boolean,
default=fal
se

Specifies whether to enable Certificate Revocation List in the ZooKeeper TLS protocols. Overrides any explicit value set via the
<code>zookeeper.ssl.crl</code> system property (note the shorter name).

zookeeper.
ssl.ocsp.
enable

Optional
Boolean,
default=fal
se

Specifies whether to enable Online Certificate Status Protocol in the ZooKeeper TLS protocols. Overrides any explicit value set via
the <code>zookeeper.ssl.ocsp</code> system property (note the shorter name).

As noted above, ZooKeeper does not support setting a key password within the keystore that differs from the keystore password itself: trying to do so will
cause the ZooKeeper connection attempt to fail. Therefore there is no configuration value for the key password, and the key password must be identical to
the keystore password.

ZooKeeper Security Migration CLI

The existing configuration option java.security.auth.login.config, used to set provide the JAAS configuration content will be kept as it is.

A new parameter will be added:

--zk-tls-config-file: <String: Zookeeper TLS configuration file path>

This config file may contain any of the above properties to configure the TLS connection to ZooKeeper; any config(s) not mentioned in the above list will be
ignored (a convenience to make it possible to pass a Broker properties file)

Config Command CLI

The same parameter will be added to support the bootstrap use case.--zk-tls-config-file

ACL Command CLI

The same parameter will be added to support the bootstrap use case.--zk-tls-config-file

ZooKeeper Shell CLI

A parameter will be added. Note the use of single-dash as opposed to double-dash here since all of the tool's parameters follow the -zk-tls-config-file
ZooKeeper project's style and are specified via a single dash. The "usage" message will be updated accordingly.

Proposed Changes
The proposed changes include the public interface changes:

New Kafka configurations, both non-prefixed as well as prefixed with " "authorizer.
A new parameter for:--zk-tls-config-file

ZooKeeper Security Migration Tool
Config Command CLI (for the special use case of bootstrapping TLS-enabled ZooKeeper)
ACL Command CLIs (for the special use case of bootstrapping TLS-enabled ZooKeeper)

A new parameter in the ZooKeeper Shell (again, note the single dash as opposed to the double-dash used above)-zk-tls-config-file

The proposed changes also include the addition of:

System tests to confirm the hardened/secured configuration for TLS connectivity to ZooKeeper
The use of ZooKeeper Security Migrator and Kafka Brokers authentication with client certificate both with and without SASL
Explicit Kafka documentation on how to configure TLS connectivity to ZooKeeper – both mutual TLS and encryption-only

Compatibility, Deprecation, and Migration Plan
The changes are additions only, and there is no compatibility issue in the broker because the default for the broker config zookeeper.client.secure
is ; TLS to ZooKeeper is an opt-in.false

Test Plan
System tests will cover the following:

Migrating Zookeeper/Kafka clusters from non-TLS-enabled ZooKeeper to TLS-enabled ZooKeeper
Invoking the Zookeeper Security Migration tool against TLS-enabled ZooKeeper both with and without ZK SASL authentication enabled
TLS encryption-only (i.e. no client certificate) connectivity to ZooKeeper.

Compatibility testing is unnecessary because Zookeeper TLS is not available in prior versions.

The connection between Kafka and Zookeeper is not on a critical path related to performance – brokers don't repeatedly communicate with Zookeeper as
they process messages, for example – so introducing TLS encryption here does not require explicit performance testing.

Rejected Alternatives

ZooKeeper-Style Configuration Names

ZooKeeper uses camelCase configs that are inconsistent with Kafka broker configs:

ZooKeeper Config Kafka Broker Config

zookeeper.ssl.keyStore.location ssl.keystore.location

zookeeper.ssl.keyStore.password ssl.keystore.password

zookeeper.ssl.keyStore.type ssl.keystore.type

zookeeper.ssl.trustStore.location ssl.truststore.location

zookeeper.ssl.trustStore.password ssl.truststore.password

zookeeper.ssl.trustStore.type ssl.truststore.type

zookeeper.ssl.ciphersuites ssl.cipher.suites

zookeeper.ssl.enabledProtocols ssl.enabled.protocols

It would be confusing and prone to mistake to have such a mismatch – especially for people who tend to know very little about ZooKeeper compared to
Kafka.

The ZooKeeper config " " is also confusing – it only refers to whether the client should be configured to communicate with a zookeeper.client.secure
TLS-encrypted ZK socket and has nothing to do with any other security-related client configuration that might be implied by the term "secure" (e.g. SASL,
ACLs). We therefore use the broker-side config " " instead.zookeeper.ssl.client.enable

Inheriting Broker Configuration Values

As mentioned above, certain broker configuration related to TLS cannot be inherited because keystore and trustore information is dynamically
reconfigurable and may end up being stored in ZooKeeper. There are other TLS configuration values that are not dynamically reconfigurable in the broker
(protocols and cipher suites, for example), but selectively inheriting these configs provides little value and could simply introduce confusion as people might
assume – incorrectly – that keystore and truststore information could also be inherited. We therefore inherit nothing from the broker related to TLS
configuration.

Requiring All Authorizer Prefixed TLS Configs

We considered requiring all authorizer ZooKeeper TLS configuration values (prefixed with " ") to be specified if any of them were specified authorizer.
with a prefix. This seemed onerous and unnecessary, and it was inconsistent with the way other ZooKeeper configs for the authorizer worked: they are
overlays/overrides, the Kafka config is inherited if they aren't specified via the prefix, and any/all can be prefixed or left out. So we treat the ZooKeeper
TLS configs the same way.

zookeeper.ssl.hostname.verifiction.enable

We could opt to use a true/false config to enable/disable ZooKeeper hostame verification. The ZooKeeper system property zookeeper.ssl.
 works that way (and cannot be changed). However, Kafka uses a different convention: it clears the endpoint identification hostnameVerification

algorithm from its default value of to disable hostname verification. Since we are explicitly deviating from the ZooKeeper system properties https
everywhere else, and since this config is rarely used, we will stay consistent with the Kafka config here as well.

zookeeper.ssl.context.supplier.class

The "zookeeper.ssl.context.supplier.class" configuration doesn't actually exist in ZooKeeper 3.5.7. The ZooKeeper admin guide documents it as being
there, but it doesn't appear in the code. This means we can't support it in this KIP. It has been added in the latest ZooKeeper 3.6 SNAPSHOT, so this conf
ig could probably be added to Kafka via a new, small KIP if/when we upgrade to ZooKeeper 3.6 (which looks to be in release-candidate stage as of this

writing). Unable to render Jira issues macro, execution

error.

 ("Add zookeeper.ssl.context.supplier.class config if/when adopting

ZooKeeper 3.6") exists for this issue.

 Unable to render Jira issues macro, execution

error.

	KIP-515: Enable ZK client to use the new TLS supported authentication

