
KIP-562: Allow fetching a key from a single partition rather
than iterating over all the stores on an instance

JIRA:

Discussion: https://www.mail-archive.com/dev@kafka.apache.org/msg104287.html

Motivation:
Whenever a call is made to get a particular key from a Kafka Streams instance, currently it returns a store wrapper that contains a list of the stores for all
the running and restoring/replica(with) on the instance via KIP-535: Allow state stores to serve stale reads during rebalance
StreamThreadStateStoreProvider#stores().

When serving queries (like ` ` or ` `), the wrapper actually iterates over all the underlying stores and issues the same query get(key) range(from, to)
on each one. This is quite inefficient, and more importantly, it disallows some capabilities that KIP-535 intended to provide.

KIP-535 introduced two discovery mechanism so that users could implement a query routing layer, the ability to find out the partition for a specific key, and
the ability to find out the locations and freshness of each replica of each partition of a store. Further, it introduced one key mechanism of a resilient query
fetch layer, the ability to serve queries from hot-standby replicas and not just running active ones.

What is implicit is that the query routing layer would select an instance from which to fetch each partition of a store that the query spans, and then fan out
to execute sub-queries against each such partition on the selected instances. However, the current store() API disallows this last step. Callers are only
able to query partitions on the local instance, not one partition.all specific

Here's an example of how this is a drawback:

Imagine we have a cluster with two instances (A and B), and a store S with two partitions (0 and 1). Imagine further that store S has one active and one
standby replica configured. Say, instance A hosts (0-active and 1-standby) and instance B hosts (1-active and 0-standby). Now, suppose the query routing
layer wants to query the standby replica (so as not to compete with active processing). This arrangement is currently impossible. What would happen
instead is that both instance A and B would return results from both partition 0 and 1, and the query router would have to de-duplicate the results. Plus, it
would not achieve the objective to avoid competing with active processing.

To fill this gap, this KIP proposes to allow querying a specific partition of a store, while still preserving the ability to query all local partitions. This would also
reduce latencies while querying a particular key from an instance, as it will fetch the key only from the specific store partition where it belongs which would
be very helpful in instances containing multiple partitions.

Public Interfaces:
Adding new class StoreQueryParameters to provide user options to the layer to understand what kind of stores a QueryableStoreProvider
user wants. It would currently include whether a user is okay with serving stale data and if user already knows what is the partition of the store a
user is looking at. Since store name and partition would be a unique combination, a taskId can be generated from this information to return the
store for that particular task.

 Unable to render Jira issues macro, execution
error.

https://www.mail-archive.com/dev@kafka.apache.org/msg104287.html
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-535%3A+Allow+state+stores+to+serve+stale+reads+during+rebalance

StoreQueryParameters.java

package org.apache.kafka.streams;

// Represents all the query options that a user can provide to state what kind of stores it is expecting
public class StoreQueryParameters<T> {

 public static <T> StoreQueryParameters<T> fromNameAndType(final String storeName, final
QueryableStoreType<T> queryableStoreType);

 public StoreQueryParameters<T> withPartition(final Integer partition);

 public StoreQueryParameters<T> enableStaleStores();

 public Integer partition();

 public boolean staleStoresEnabled();

 public String storeName();

 public QueryableStoreType<T> queryableStoreType();
}

Changing the KafkaStreams#store(final String storeName, final QueryableStoreType<T> queryableStoreType, final
 in favour of the function mentioned below as this one hasn't been released yet.boolean staleStores)

KafkaStreams.java

public class KafkaStreams {
 @Deprecated
 public <T> T store(final String storeName, final QueryableStoreType<T> queryableStoreType);

 // remove (was added via KIP-535 and was never released)
 public <T> T store(final String storeName, final QueryableStoreType<T> queryableStoreType, final boolean
staleStores);

 // newly added
 public <T> T store(final StoreQueryParameters<T> storeQueryParameters);
}

Proposed Changes:
Add a new public class to set options for what kind of stores a user wants.StoreQueryParameters
Create a taskId from the combination of store name and partition provided by the user.
In return only the stores for the task requested by the user and also check the condition to return StreamThreadStateStoreProvider.java
only running stores or standby/recovering stores as well.

Compatibility, Deprecation, and Migration Plan:
KafkaStreams#store(final String storeName, final QueryableStoreType<T> queryableStoreType, final boolean includeStaleStores) will be
changed to the one mentioned in the Public Interfaces changes. Since the mentioned function is not released yet in any version, no deprecation is
required.

storeDeprecating (final String storeName, final QueryableStoreType<T method in favour of public <T> T store(final > queryableStoreType)
StoreQueryParameters<T> storeQueryParameters) as both store name and queryableStoreType have been added to StoreQueryParameters.

Rejected Alternatives:
Overload the QueryableStoreProvider#getStore() and StreamThreadStateStoreProvider#stores() with new parameters to pass a list of partitions
along with the currently passed flag includeStaleStores.

	KIP-562: Allow fetching a key from a single partition rather than iterating over all the stores on an instance

