
KIP-568: Support RPC message type 'double'

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under discussion

Discussion thread: TODO

JIRA: KAFKA-9474

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The Kafka RPC message format has no inherent support for handling values, however some interfaces may benefit from their addition. The Double
particular motivating case is in implementing a quotas admin client API (), which natively accepts values, but there's no direct way to KIP-546 Double
define them in the RPC messages. Instead of attempting to work around this limitation, it'd be useful to extent the RPC format to support values.Double

Public Interfaces
Adds as a possible RPC protocol field type.double

This has no immediate impact to any existing public interfaces. It'll permit new and existing messages to add fields to their structure in subsequent double
iterations.

Proposed Changes
Adds the following code block to and support code to clients/src/main/java/org/apache/kafka/common/protocol/types/Type.java Stru

.ct.java

Note that, while the natively supports serializing a , the format in which the value is serialized is not strongly specified, so the ByteBuffer Double
preference is to explicitly ensure a standard representation using and Double.doubleToRawLongBits() Double.longBitsToDouble().

https://issues.apache.org/jira/browse/KAFKA-9474
https://cwiki.apache.org/confluence/display/KAFKA/KIP-546%3A+Add+quota-specific+APIs+to+the+Admin+Client%2C+redux

clients/src/main/java/org/apache/kafka/common/utils/ByteUtils.java

 /**
 * Read a double-precision 64-bit format IEEE 754 value.
 *
 * @param buffer The buffer to read from
 * @return The long value read
 */
 public static double readDouble(ByteBuffer buffer) {
 return Double.longBitsToDouble(buffer.getLong());
 }

 /**
 * Write the given double following the double-precision 64-bit format IEEE 754 value into the buffer.
 *
 * @param value The value to write
 * @param buffer The buffer to write to
 */
 public static void writeDouble(double value, ByteBuffer buffer) {
 buffer.putLong(Double.doubleToRawLongBits(value));
 }

The protocol type definition:

clients/src/main/java/org/apache/kafka/common/protocol/types/Type.java

 public static final DocumentedType DOUBLE = new DocumentedType() {
 @Override
 public void write(ByteBuffer buffer, Object o) {
 ByteUtils.writeDouble((Double) o, buffer);
 }

 @Override
 public Object read(ByteBuffer buffer) {
 return ByteUtils.readDouble(buffer);
 }

 @Override
 public int sizeOf(Object o) {
 return 8;
 }

 @Override
 public String typeName() {
 return "DOUBLE";
 }

 @Override
 public Double validate(Object item) {
 if (item instanceof Double)
 return (Double) item;
 else
 throw new SchemaException(item + " is not a Double.");
 }

 @Override
 public String documentation() {
 return "Represents a double-precision 64-bit format IEEE 754 value. " +
 "The values are encoded using eight bytes in network byte order (big-endian).";
 }
 };

In , the following operations will be used (code omitted for generator/src/main/java/org/apache/kafka/message/MessageGenerator.java
brevity):

generator/src/main/java/org/apache/kafka/message/MessageGenerator.java

Hash code: Double.hashCode(value)

Empty value: (double) 0

Parsing a default value string: Double.parseDouble(defaultValue)

Compatibility, Deprecation, and Migration Plan
No deprecation or migration necessary.
Compatibility

Let's say existing message DescribeConfigsRequest added a field.double
If the client is old but server is new, then it won't attempt to set the double field, so it won't be serialized in the request.
If the client is new but server is old, then the server won't understand the request due to a version mismatch (this setup is
generally not advised).

If a new request with a field is added, both client and server must be aware of the message, and therefore will be aware of the double d
 message type.ouble

Rejected Alternatives
Requiring the application to serialize into an existing RPC type (int64). This is prone to error and introduces additional complexity in areas where
the application shouldn't have to worry about it.

	KIP-568: Support RPC message type 'double'

