Scheduled Queries

® Maintaining scheduled queries
O Create Scheduled query syntax
O Alter Scheduled query syntax
© Drop syntax
© scheduleSpecification syntax
® CRON based schedule syntax
® EVERY based schedule syntax
© ExecutedAs syntax
© enableSpecification syntax
© Defined AS syntax
O executeSpec syntax
® System tables/views
© information_schema.scheduled_queries
© information_schema.scheduled_executions
" Execution states
® Configuration
O Hive metastore related configuration
O HiveServer2 related configuration
® Examples
© Example 1 — basic example of using schedules
O Example 2 — analyze external table periodically
© Example 3 — materialized view rebuild
© Example 4 — Ingestion

Intro
Executing statements periodically can be usefull in
® Pulling informations from external systems
® Periodically updating column statistics
® Rebuilding materialized views
Overview
® The metastore maintains the scheduled queries in the metastore database

® Hiveserver(s) periodically polls the metastore for a scheduled query to be executed
© During execution informations about ongoing/finished executions are kept in the metastore

@ Scheduled queries were added in Hive 4.0 (HIVE-21884)

Hive has it's scheduled query interface built into the language itself for easy access:

Maintaining scheduled queries

Create Scheduled query syntax

CREATE SCHEDULED QUERY <scheduled_query_name>
<scheduleSpecification>
[<executedAsSpec>]
[<enableSpecification>]
<definedAsSpec>

Alter Scheduled query syntax

ALTER SCHEDULED QUERY <scheduled_query_name>
(<scheduleSpec>|<executedAsSpec>|<enableSpecification>|<definedAsSpec>|<executeSpec>);

Drop syntax

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-scheduleSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-executedAsSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-enableSpecification
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-definedAsSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-scheduleSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-executedAsSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-enableSpecification
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-definedAsSpec
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-executeSpec

DROP SCHEDULED QUERY <scheduled_query_name>;

scheduleSpecification syntax

Schedules can be specified using CRON expressions or for common cases there is a simpler form; in any case the schedule is stored as Quartz cron
expression.

CRON based schedule syntax

CRON <quartz_schedule_expression>

where quartz_schedule_expression is quoted schedule in the Quartz format
https://www.freeformatter.com/cron-expression-generator-quartz.html

For examplethe CRON ' 0 */10 * * * ? *' expression will fire every 10 minutes.

EVERY based schedule syntax

To give a more readable way to declare schedules EVERY can be used.

EVERY [<integer>] (SECOND|MINUTE|HOUR) [(OFFSET BY|AT) <timeOrDate>]
the format makes it possible to declare schedules in a more readable way:

EVERY 2 MINUTES

EVERY HOUR AT '0:07:30'
EVERY DAY AT '11:35:30"

ExecutedAs syntax
EXECUTED AS <user_name>

Scheduled queries are executed as the declaring user by default; but people with admin privileges might be able to change the executing user.

enableSpecification syntax

(ENABLE[D] | DISABLE[D])

Can be used to enable/disable a schedule.

1 For CREATE SCHEDULED QUERY statements the default behaviour is set by the configuration key hive.scheduled.queries.create.as.
enabled

1 Incase there are in-flight scheduled executions at the time when the corresponding schedule is disabled - the already running executions will
still finish. But no more executions will be triggered.

Defined AS syntax

[DEFINED] AS <hiveQuery>

The “query” is a single statement expression to be scheduled for execution.

executeSpec syntax

EXECUTE

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=145724134#ScheduledQueries-quartz_schedule_expression
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html

Changes the schedules next execution time to be now. Could be useful during debugging/development.

System tables/views

Informations about scheduled queries/executions can be obtain by using the information_schema or the sysdb - recommended way is to use the
information_schema; sysdb is tables are there to build the information_schema level views - and for debugging.

information_schema.scheduled_queries

Suppose we have a scheduled query defined by:

create scheduled query scl cron '0 */10 ** * ? *' as select 1;

Let's take a look at it in the information_schema.scheduled_queries table by using

select * from information_schema.scheduled_queries;

1 will transpose the resultset to describe each column

scheduled_query_id | 1

schedule_name
enabled
cluster_namespace
schedule

user

query

next_execution

scl

true

hive

0*10*** 2 *

dev

select 1

Internally, every scheduled query also has a numeric id
The name of the schedule

True if the schedule is enabled

The namespace thes scheduled query belongs to

The schedule described in QUARTZ cron format

The owner/executor of the query

The query being scheduled

2020-01-29 16:50:00 = Technical column; shows when the next execution should happen

1 (schedule_name,cluster_namespace) is unique

information_schema.scheduled_executions

This view can be used to get information about recent scheduled query executions.

select * from information_schema.scheduled_executions;

One record in this view has the following informations:

scheduled_executi
on_id

schedule_name

executor_query_id

state
start_time
end_time
elapsed

error_message

13

scl

Every scheduled query execution has a unique numeric id

The schedule name to which this execution belongs

dev_20200131103008_c9a39b8d-e26b-44cd-b8ae- The query id assigned by the execution engine for the given scheduled

9d054204dc07

FINISHED

2020-01-31 10:30:06

2020-01-31 10:30:08

2

NULL

execution

State of the execution; can be
Start time of execution

End time of execution
(computed) end_time-start_time

In case the query is FAILED the error message is shown here

last_up

Execu

INITED

EXECU
TING

date_time NULL During execution the last update time the executor provided
informations about the state

tion states

The scheduled execution record is created at the time an executor is assigned to run it;
The INITED state is retained until the first update from the executor comes in.

Queries in executing state are being processed by the executor; during this phase the executor reports the progress of the query in intervals
defined by: hive.scheduled.queries.executor.progress.report.interval

FAILED ' The query execution stoped by an error code(or an exception) when this state is set the error_message is also filled.

FINISH
ED

TIMED
_ouTt

The query finished without problems

An execution is considered timed out when it's being executed for more than metastore.scheduled.queries.execution.timeout.

The scheduled queries maintenance task checks for any timed out executions.

@ How long are execution informations are retained?

The scheduled query maintenance task removes older than metastore.scheduled.queries.execution.max.age entries.

Configuration

Hive metastore related configuration

metastore.scheduled.queries.enabled (default: true)

Controls the metastore side support for scheduled queries; forces all HMS scheduled query related endpoints to return with an error
metastore.scheduled.queries.execution.timeout (default: 2 minutes)

In case a scheduled execution is not updated for at least this amount of time; it's state will be changed to TIMED_OUT by the cleaner task
metastore.scheduled.queries.execution.maint.task.frequency (default: 1 minute)

Interval of scheduled query maintenance task. Which removes executions above max age; and marks executions as TIMED_OUT if the
condition is met

metastore.scheduled.queries.execution.max.age (default: 30 days)

Maximal age of a scheduled query execution entry before it is removed.

HiveServer2 related configuration

hive.scheduled.queries.executor.enabled (default: true)

Controls whether HS2 will run scheduled query executor.

hive.scheduled.queries.namespace (default: "hive")

Sets the scheduled query namespace to be used. New scheduled queries are created in this namespace; and execution is also bound to the
namespace

hive.scheduled.queries.executor.idle.sleep.time (default: 1 minute)

Time to sleep between querying for the presence of a scheduled query.
hive.scheduled.queries.executor.progress.report.interval (default: 1 minute)

While scheduled queries are in flight; a background update happens periodically to report the actual state of the query.
hive.scheduled.queries.create.as.enabled (default: true)

This option sets the default behaviour of newly created scheduled queries.
hive.security.authorization.scheduled.queries.supported (default: false)

Enable this if the configured authorizer is able to handle scheduled query related calls.

Examples

Example 1 — basic example of using schedules

create table t (a integer);

-- create a schedul ed query; every 10 minute insert a new row

create schedul ed query scl cron 'O */10 * * * ? *' as insert into t values (1);

-- dependi ng on hive.schedul ed. queri es. create. as. enabl ed the query might get create in disabled node
-- it can be enabl ed using:

al ter schedul ed query scl enabl ed;

-- inspect schedul ed queries using the information_schena
select * frominfornation_schena. schedul ed_queries s where schedul e_nane='scl';

oo S B oo Fom e e o - R
T R +

| s.scheduled_query_id | s.schedul e_nane s.enabled | s.cluster_nanmespace s. schedul e s. user
s.query | s. next _execution |

R L o o T oo o
B oo +

| 1 | scl | true | hive | 0*/10 * * * 2 * | dev
select 1 | 2020-02-03 15:10:00 |

oo S B oo Fom e e o - R
T R +

-- wait 10 mnutes or execute by issuing:
al ter schedul ed query scl execute;

select * frominformation_schena. schedul ed_executi ons s where schedul e_nanme='scl' order by
schedul ed_execution_id desc limt 1;

B S o m e m e e e e e e e e e e e e e e e e e e e B
em e meeeiieaaicaaiaaaan - S - - +

| s.schedul ed_execution_id | s.schedule_nanme | s. executor _query_id | s.state

| s.start_tinme | s.end_tinme | s.elapsed | s.error_nessage | s.last_update_tine |

ee e memeeeeieaaeeaaan Feee e R T NN NS Feeemmeeaea
oo Fom e e e e e e e e o R Fom e e o - R +

| 496 | sci1 | dev_20200203152025_bdf 3deac- Oca6- 407f - b122- c637e50f 99¢c8 |
FINISHED | 2020-02-03 15:20:23 | 2020-02-03 15:20:31 | 8 | NULL | NULL

B S o m e m e e e e e e e e e e e e e e e e e e e B
em e meeeiieaaicaaiaaaan - S - - +

Example 2 — analyze external table periodically

Suppose you have an external table - the contents of it is slowly changing...which will eventually lead that Hive will utilize outdated statistics during
planning time

-- create external table
create external table t (a integer);

-- see where the table lives:
desc formatted t;

[...]

| Location: | file:/datalhivel/warehouse/t
NULL |

[-.-]

-- inatermnal; |load some data into the table directory:

seq 1 10 > /data/ hive/warehouse/t/f1

-- back in hive you will see that

sel ect count(1) fromt;

10

-- meanwhil e basic stats show that the table has "0" rows
desc formatted t;

[...]

| | nunmRows
0

[...]

create schedul ed query t_analyze cron '0 */1 * * * ?2 *' as analyze table t conpute statistics for colums;

-- wait sone tine or execute by issuing:
al ter schedul ed query t_anal yze execute;

select * frominformati on_schenma. schedul ed_executi ons s where schedul e_nanme=' ex_anal yze' order by
schedul ed_execution_id desc limt 3;

e o e
o e L T o o
oo +

| s.schedul ed_execution_id | s.schedule_nanme | s. executor_query_id | s
state | s.start_tine | s.end_tine | s.elapsed | s.error_message | s.last_update_tine
B S o m e m e e e e e e e e e e e e e e e e e e e
Foemmm e LT R o T
o e e +

| 498 | t_analyze | dev_20200203152640_a59bc198- 3ed3- 4ef 2- 8f 63- 573607c9914e |
FINISHED | 2020-02-03 15:26:38 | 2020-02-03 15:28:01 | 83 | NULL | NULL

|

Feemeeieiiaiceiiiiaiaee R T TS

B o e eeeeaa o o e meeee oo B B
oo +

-- and the nunrows have been updated
desc formatted t;

[-..]

| | numRows
10

[-..]

-- we don't want this running every mnute anynore...
al ter schedul ed query t_anal yze di sabl e;

Example 3 — materialized view rebuild

-- sone settings...they mght be there already

set hive. support.concurrency=true;

set hive.txn. manager =or g. apache. hadoop. hi ve. gl . | ockngr . DbTxnManager ;
set hive.strict.checks. cartesian. product =f al se;

set hive.stats.fetch. colum. stats=true;

set hive.materializedview rewiting=true;

-- create sone tables
CREATE TABLE enps (
enpi d | NT,
deptno I NT,
nane VARCHAR(256),
sal ary FLQOAT,
hire_date TI MESTAWP)
STORED AS ORC
TBLPROPERTI ES ('transactional'="true');

CREATE TABLE depts (
deptno I NT,
dept nane VARCHAR(256) ,
| ocationid I NT)
STORED AS ORC
TBLPROPERTI ES (' transactional'="true');

-- load data

insert into enps values (100, 10, 'Bill', 10000, 1000), (200, 20, 'Eric', 8000, 500),
(150, 10, 'Sebastian', 7000, null), (110, 10, 'Theodore', 10000, 250), (120, 10, 'Bill', 10000, 250),
(1330, 10, 'Bill"', 10000, '2020-01-02");

insert into depts values (10, 'Sales', 10), (30, 'Mrketing', null), (20, "HR, 20);

insert into emps values (1330, 10, 'Bill', 10000, '2020-01-02");

-- create nv

CREATE MATERI ALI ZED VI EW nv1 AS
SELECT enpi d, deptnane, hire_date FROM enps
JO N depts ON (enps. deptno = depts. deptno)
WHERE hire_date >= '2016-01-01 00: 00: 00" ;

EXPLAI N

SELECT enpi d, deptnane FROM enps

JO N depts ON (enps. deptno = depts. deptno)
VWHERE hire_date >= '2018-01-01";

-- create a schedule to rebuild m
create schedul ed query mv_rebuild cron "0 */10 * * * 2 *' defined as
alter materialized view nvl rebuild;

-- fromthis expalin it will be seen that the mvl is being used
EXPLAI N

SELECT enpi d, deptnane FROM enps

JO N depts ON (enps. deptno = depts. deptno)

WHERE hire_date >= '2018-01-01';

-- insert a new record
insert into enps values (1330, 10, 'Bill', 10000, '2020-01-02");

-- the source tables are scanned

EXPLAI N

SELECT enpi d, deptnanme FROM enps

JO N depts ON (enps.deptno = depts. dept no)
WHERE hire_date >= '2018-01-01';

-- wait 10 minutes or execute
al ter schedul ed query mv_rebuild execute;

-- run it again...the view should be rebuilt
EXPLAI N

SELECT enpi d, deptnane FROM enps

JO N depts ON (enps. deptno = depts. deptno)
WHERE hire_date >= '2018-01-01';

Example 4 — Ingestion

drop table if exists t;
drop table if exists s;

-- suppose that this table is an external table or sonething
-- which supports the pushdown of filter condition on the id colum
create table s(id integer, cnt integer);

-- create an internal table and an offset table
create table t(id integer, cnt integer);

create table t_offset(offset integer);

insert into t_offset values(0);

-- pretend that data is added to s
insert into s values(1,1);

-- run an ingestion...

from (select id==offset as first,* froms

join t_offset on id>=offset) sl

insert intot select id,cnt where first = fal se
insert overwite table t_offset select max(sl.id);

-- configure to run ingestion every 10 minutes

create schedul ed query ingest every 10 minutes defined as
from (select id==offset as first,* froms

join t_offset on id>=offset) sl

insert intot select id,cnt where first = fal se

insert overwite table t_offset select max(sl.id);

-- add some new val ues
insert into s values(2,2),(3,3);

-- pretend that a tineout have happened
al ter schedul ed query ingest execute;

	Scheduled Queries

