
KIP-572: Improve timeouts and retries in Kafka Streams

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: "Accepted" [VOTE] KIP-572: Improve timeouts and retires in Kafka Streams

Discussion thread: [DISCUSS] KIP-572: Improve timeouts and retires in Kafka Streams

JIRA: 

Released: 2.7 / 2.8

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Today, Kafka Streams relies mainly on its internal clients (consumer/producer/admin) to handle timeout 
exceptions and retries (the "global thread" is the only exception). However, this approach has many 
disadvantages. (1) It is harder for users to configure and reason about the behavior and (2) if a client retries 
internally, all other tasks of the same  are blocked. Furthermore, the Kafka Streams   StreamThread retries

config has a default value of 0 and is only used in the global thread while producer and admin client default re

 is   (note that the embedded clients in Kafka Streams also use  as tires Integer.MAX_VALUE MAX_VALUE

default; the default value of  only applies to the global thread). This implies that if users set Kafka retries=0

Streams   they may accidentally reduce the producer and admin client retry config.retries

To make Kafka Streams more robust, we propose to catch all client  s in Kafka Streams and handle them more gracefully. TimeoutException
Furthermore, reasoning about time is simpler for users then reasoning about number of retries. Hence, we propose to base all configs on timeouts and to 
deprecate  configuration parameter for Kafka Streamsretries .

Public Interfaces
We propose to deprecate the   configuration parameter for . Furthermore, we introduce   as an upper bound for retries Kafka Streams task.timeout.ms
any task to make progress with a default config of 5 minutes. If a task hits a client TimeoutException, the task would be skipped and the next task is 
processed.

The existing   is used as backoff time (default value 100ms) if a tight retry loop is required. We rely on client internal retry/backoff retry.backoff.ms
mechanism to void busy waiting (cf.  ).KIP-580: Exponential Backoff for Kafka Clients

Proposed Changes
Kafka Streams will ignore the  config and we only keep it to not break code that might set it and log a warning if used. The default  value retires retries

in Kafka Streams is 0 and we want to have a more robust default configuration. Note that the default retries values of 0 does not apply the 
embedded producer or admin client. Only if the user explicitly sets   the embedded producer and retries

admin client configs would we changed (this KIP does not change this behavior).

 Unable to render Jira issues macro, execution 

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/202005.mbox/%3C462ce95b-4743-4e4d-0baf-d16b6af8655f%40apache.org%3E
http://mail-archives.apache.org/mod_mbox/kafka-dev/202002.mbox/%3Ca7e608c5-6b1c-0cd9-1d5a-67c14b05f735%40apache.org%3E
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-580%3A+Exponential+Backoff+for+Kafka+Clients


Furthermore, we propose to catch all client   in Kafka Streams instead of treating them as TimeoutException

fatal, and thus to not rely on the consumer/producer/admin client to handle all such errors. If a TimeoutExcep

 occurs, we skip the current task and move to the next task for processing (we will also log a WARNING tion

for this case to give people inside which client call did produce the timeout exception). The failed task would 
automatically be retired in the next processing loop. Because other tasks are processed until a task is retried, 
we don't have to worry about a busy wait situation. Even if a thread would have only a single task, the clients 
internal exponential retries would avoid busy waiting.

To make sure that timeout issues can be reported eventually, we use a new   config to task.timeout.ms

allow user to stop processing at some point if a single task cannot make any progress. The "timer" for task.

 starts when the first client  is detected and is reset/disabled if a task timeout.ms TimeoutException

processes records successfully in a retry. If  passed, a final attempt will be made to make task.timeout.ms

progress (this strategy ensures that a task will be retried at least once; except   is set to 0, task.timeout.ms

; if another client   occurs, processing is stopped by re-throwing what implies zero retries) TimeoutException

it and the streams-thread dies. Note that the   config does only apply if a task.timeout.ms TimeoutExcept

 occurred. During normal, potentially slow processing,   would not be applied.ion task.timeout.ms

Note that some client calls are issued for multiple tasks at once (as it is more efficient to issue fewer requests 
to brokers). For this case, the "timer" would start ticking for all those tasks.

To replace   in the global thread's initialization phase, we also retry TimeoutException until   expires. We apply existing retries task.timeout.ms retry.
 config and rely on the client to do exponential backoff and retry for this case.backoff.ms

Last, the admin client is used within the group leader to collect topic metadata and to create internal topics if necessary. If those calls fails, they are retried 
within Kafka Streams re-using the admin client's   config. The current retry loop is across multiple admin client calls that are issues interleaved. retries
This interleaved retry logic should be preserved. However, we should not retry infinitely (and also not allow users to specify how long to retry) to avoid that 
the leader is stuck forever (even if it would be removed from the group by the group coordinator after a timeout anyway that is set to max.poll.

). To avoid dropping out of the consumer group, the retry loop should be stopped before we hit the timeout. We propose to use a 50% interval.ms
threshold, i.e., half of .max.poll.interval.ms

Compatibility, Deprecation, and Migration Plan
Kafka Streams will ignore   config; however, the new default will be more robust and thus no backward compatibly concern arises. If users really retries
want to have the old "non robust" fail immediately  behavior, they can set  .task.timeout.ms=0

Test Plan
Regular unit and integration tests are sufficient. Existing system tests should provide good coverage implicitly.

Rejected Alternatives

Reuse the existing   config and handle client TimeoutException based on it. Rejected because retries

a reasoning about time is easier for users and other client started to move away from count based 
retries already.
A task could be retried immediately if a client TimeoutException occurs instead of skipping it. However, 
this would result is "busy wait" pattern and other tasks could not make progress until the "failing" task 
makes progress again of eventually times out.
It would be possible to apply  on a per method level (ie, for each client method that is called, retries

an individual retry counter is maintained). This proposal is rejected because it seems to be too fine 
grained and hard to reason about for users.



If would be possible to apply  at the thread level, i.e., whenever the thread does not make any retries

progress in one task-processing-loop (ie, all tasks throw a timeout exception within the loop), the per-
thread retry counter would be increased. This proposal is rejected as too coarse grained. In particular, a 
single task could get stuck while other tasks make progress and this case would not be detected.
If would be possible to apply  at the thread level instead of a  at a task level: whenever the thread does thread.timeout.ms task.timeout.ms
not make any progress on any tasks within the timeout, the thread would fail. This proposal is rejected as too coarse grained. In particular, a 
single task could get stuck while other tasks make progress and this case would not be detected.

To distinguish between retries within Kafka Streams and client retries (in particular the producer's send r

 config), we could add a new config (eg, `task.retries`). However, keeping the number of config etries

small is desirable and the gain of the new config seems limited.
To avoid that people need to consider setting   and   explicitly, we producer.retries admin.retires

could change the behavior of Kafka Streams and use   explicitly for Streams level retries. For retries

this case, setting   would not affect the producer or admin client and both retries could only be retries

change with their corresponding client-prefix config. This would be a backward incompatible change.
We considered to deprecate the   configuration parameter also for the producer and admin retries

client. However, there are some use cases that need to disable retries all together what is no possible 
by setting producer/admin client timeouts to zero (in contrast to the new  setting task.timeout.ms=0

that disables retrying).


	KIP-572: Improve timeouts and retries in Kafka Streams

