
KIP-578: Add configuration to limit number of partitions

Status
Motivation

Goals
Public Interfaces

Configs
An illustrative (toy) example - CreateTopic

API Exceptions
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
Appendix A: Performance with a large number of partitions

A1: Producer performance
A2: Topic creation and deletion times

Author: Gokul Ramanan Subramanian

Contributors: Alexandre Dupriez, Tom Bentley, Colin McCabe, Ismael Juma, Boyang Chen, Stanislav Kozlovski

Status
Current state: Voting

Discussion thread: Here

JIRA:
 Unable to render Jira issues macro, execution

error.

PR: (currently only prototype, slightly out of date wrt KIP, but gets the idea across)https://github.com/apache/kafka/pull/8499

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The number of partitions is a lever in controlling the performance of a Kafka cluster. Increasing the number of partitions can lead to higher performance.
However, increasing the number beyond a point can lead to degraded performance on various fronts.

The current generic recommendation to have no more than 4000 partitions per broker and no more than 200000 partitions per cluster is not enforced by
Kafka. We have seen multiple issues in production clusters where having a large number of partitions leads to live-locked clusters that are so busy that
even topic deletion requests intended to alleviate the problem do not complete.

We did some performance experiments to understand the effect of increasing the number of partitions. See Appendix A1 for producer performance, and
A2 for topic creation and deletion times. These consistently indicate that having a large number of partitions can lead to a malfunctioning cluster.

Topic creation policy plugins specified via the configuration can partially help solve this problem by rejecting requests that create.topic.policy.class.name
result in a large number of partitions. However, these policies cannot produce a replica assignment that respects the partitions limits, instead they can only
either accept or reject a request. Therefore, we need a more native solution for addressing the problem of partition limit-aware replica assignment. (See
rejected alternatives for more details on why the policy approach does not work.)

We propose having two configurations (a) to limit the number of partitions per broker, and (b) to limit the number of max.broker.partitions max.partitions
partitions in the cluster overall. These can act as guard rails ensuring that the cluster is never operating with a higher number of partitions than it can
handle.

Goals

These limits are cluster-wide. This is obviously true for which is meant to apply at the cluster level. However, we choose this for max.partitions ma
 too, instead of supporting different values for each broker. This is in alignment with the current recommendation to run x.broker.partitions

homogenous Kafka clusters where all brokers have the same specifications (CPU, RAM, disk etc.).
If both limits and are specified, then the more restrictive of the two apply. It is possible that a request is max.partitions max.broker.partitions
rejected because it causes the limit to be hit without causing any broker to hit the limit. The vice versa is true max.partitions max.broker.partitions
as well.
These limits can be changed at runtime, without restarting brokers. This provides greater flexibility. See the "Rejected alternatives" section for
why we did not go with read-only configuration.
These limits won't apply to topics created via auto topic creation (currently possible via API requests) until KIP-590. With KIP-590, auto-Metadata
topic creation will leverage the CreateTopics API, and will have same behavior as the creation of any other topic.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/rf6cb94b36d5f8819d08dab5f549872c7ca9690f22914a97009559d08%40%3Cdev.kafka.apache.org%3E
https://github.com/apache/kafka/pull/8499

These limits do not apply to internal topics (i.e. __consumer_offsets and __transaction_state), which usually are not configured with too many
partitions. This ensures that any internal Kafka behaviors do not break because of partition limits. The topic partitions corresponding to these
internal topics won't also count towards the limit.
These limits do not apply when creating topics or partitions, or reassigning partitions via the ZooKeeper-based admin tools. This is unfortunate,
because it does create a backdoor to bypass these limits. However, we leave this out of scope here given that ZooKeeper will eventually be
deprecated from Kafka.

Public Interfaces

Configs

Config name Type Default Update-mode

max.broker.partitions int64 int64's max value (2 - 1)63 cluster-wide

max.partitions int64 int64's max value (2 - 1)63 cluster-wide

Kafka administrators can specify these in the server.properties file.

They can also use the following to set/modify these configurations via the kafka-config.sh admin tool.

./kafka-config.sh --bootstrap-server $SERVERS --alter --add-config max.broker.partitions=4000 --entity-type
brokers --entity-default
./kafka-config.sh --bootstrap-server $SERVERS --alter --add-config max.partitions=200000 --entity-type brokers
--entity-default

It is also possible to set this value per broker via the following command, which applies the change to only a specific broker, for testing purposes.

./kafka-config.sh --bootstrap-server $SERVERS --alter --add-config max.broker.partitions=4000 --entity-type
brokers --entity-name 1
./kafka-config.sh --bootstrap-server $SERVERS --alter --add-config max.partitions=200000 --entity-type brokers
--entity-name 1

However, if different values are specified for different brokers, then only the value that applies to the broker handling the request will matter. This is the
controller in most cases, but can be any broker in case of auto topic creation.

Further, the stricter of the two configurations and will apply.max.broker.partitions max.partitions

An illustrative (toy) example - CreateTopic

For example, in a 3 broker cluster, say that is configured equal to 10. If the brokers already host 8, 6 and 9 partitions respectively, max.broker.partitions
then a request to create a new topic with 1 partition and a replication factor 3 can be satisfied, resulting in partition counts of 9, 7 and 10 respectively.
However, the next topic creation request for 1 partition with a replication factor of 3 will fail because broker 3 has already reached the limit. A similar
request with a replication factor of 2 can however, succeed, because 2 of the brokers have still not reached the limit. If the original request for a topic with
1 partition was actually a request for a topic with 2 partitions, with a replication factor of 3, then the request would have failed in entirety.

API Exceptions

, and AlterPartitionReassignments APIs will throw and correspondingly the CreateTopics CreatePartitions, PolicyViolationException POLICY_VIOLATION
 error code if it is not possible to satisfy the request while respecting the or limits. This applies to request(44) max.broker.partitions max.partitions Metadata

s only in case auto-topic creation is enabled post KIP-590, which will modify the Metadata API to call CreateTopics. We will bump up the version of these
APIs by one for new clients.

The actual exception will contain the values of and in order to make it easy for users to understand why their request max.broker.partitions max.partitions
got rejected.

Proposed Changes
The following table shows the list of methods that will need to change in order to support the and configurations. (We max.broker.partitions max.partitions
skip a few internal methods for the sake of simplicity.)

Method name Description of what the method does currently Context
in which
used

Relevant methods
which directly
depend on this one

Relevant methods
on which this one is
directly dependent

`AdminUtils.

assignReplicasToBro
kers`

Encapsulates the algorithm specified in to assign partitions KIP-36
to brokers on as many racks as possible. This also handles the
case when rack-awareness is disabled.
This is a pure function without any state or side effects.

API
ZooKee
per-
based
admin
tools

`AdminZkClient.
createTopic`

`AdminZkClient.
addPartitions`

`AdminManager.
createTopics`

`ReassignPartitionsComm
and.generateAssignment`

`AdminZkClient.
createTopicWithAssig
nment`

Creates the ZooKeeper znodes required for topic-specific configuration
and replica assignments for the partitions of the topic. API

ZooKee
per-
based
admin
tools

`AdminZkClient.
createTopic`

`AdminManager.
createTopics`

`ZookeeperTopicService.
createTopic`

`AdminZkClient.
createTopic`

Computes replica assignment using `AdminUtils.
assignReplicasToBrokers` and then reuses `AdminZkClient.
createTopicWithAssignment`.

API
ZooKee
per-
based
admin
tools

`KafkaApis.createTopic`

`ZookeeperTopicService.
createTopic`

`AdminUtils.
assignReplicasToBrokers`

`AdminZkClient.
createTopicWithAssignme
nt`

`AdminZkClient.
addPartitions` Computes replica assignment using `AdminUtils.

assignReplicasToBrokers` when replica assignments are not
specified.
When replica assignments are specified, uses them as is.
Creates the ZooKeeper znodes required for the new partitions
with the corresponding replica assignments.

API
ZooKee
per-
based
admin
tools

`AdminManager.
createPartitions`

`ZookeeperTopicService.
alterTopic`

`AdminUtils.
assignReplicasToBrokers`

`AdminManager.
createTopics` Used exclusively by `KafkaApis.handleCreateTopicsRequest` to

create topics.
Reuses `AdminUtils.assignReplicasToBrokers` when replica
assignments are not specified.
When replica assignments are specified, uses them as is.

API
`KafkaApis.
handleCreateTopicsRequ
est`

`AdminUtils.
assignReplicasToBrokers`

`AdminZkClient.
createTopicWithAssignme
nt`

`AdminManager.
createPartitions`

Used exclusively by `KafkaApis.handleCreatePartitionsRequest` to
create partitions on an existing topic. API

`KafkaApis.
handleCreatePartitionsRe
quest`

`AdminZkClient.
addPartitions`

`KafkaController.
onPartitionReassignm
ent`

Handles all the modifications required on ZooKeeper znodes and
sending API requests required for moving partitions from some brokers
to others.

API
`KafkaApis.
handleAlterPartitionReass
ignmentsRequest`

(not quite directly, but the
stack trace in the middle
is not relevant)

`KafkaApis.
handleCreateTopicsR
equest`

Handles the API request sent to a broker, if that broker is CreateTopics
the controller. API

`AdminManager.
createTopics`

`KafkaApis.
handleCreatePartition
sRequest`

Handles the API request sent to a broker, if that broker CreatePartitions
is the controller. API

`AdminManager.
createPartitions`

`KafkaApis.
handleAlterPartitionR
eassignmentsReques
t`

Handles the API request sent to a broker, AlterPartitionReassignments
if that broker is the controller. API

`KafkaController.
onPartitionReassignment`

(not quite directly, but the
stack trace in the middle
is not relevant)

`KafkaApis.
createTopic` Creates internal topics for storing consumer offsets (__consumer_

offsets), and transaction state (__transaction_state).
Also used to auto-create topics when topic auto-creation is
enabled.

API
`KafkaApis.
handleTopicMetadataReq
uest`

(not quite directly, but the
stack trace in the middle
is not relevant)

`AdminZkClient.
createTopic`

`KafkaApis.
handleTopicMetadata
Request`

Handles the API request sent to a broker.Metadata
API

`KafkaApis.createTopic`

(not quite directly, but the
stack trace in the middle
is not relevant)

`ZookeeperTopicServ
ice.createTopic`

`AdminZkClient.
createTopic`

https://cwiki.apache.org/confluence/display/KAFKA/KIP-36+Rack+aware+replica+assignment

Used by the ./kafka-topics.sh admin tool to create topics when --
zookeeper is specified.
Reuses `AdminZkClient.createTopic` when no replica
assignments are specified.
Reuses `AdminZkClient.createTopicWithAssignment` when
replica assignments are specified.

ZooKee
per-
based
admin
tools

`AdminZkClient.
createTopicWithAssignme
nt`

`ZookeeperTopicServ
ice.alterTopic` Used by the admin tool to alter topics when ./kafka-topics.sh --

 is specified.zookeeper
Calls `AdminZkClient.addPartitions` if topic alteration involves a
different number of partitions than what the topic currently has.

ZooKee
per-
based
admin
tools

`AdminZkClient.
addPartitions`

`ReassignPartitionsC
ommand.
generateAssignment`

Used by the admin tool to generate a ./kafka-reassign-partitions.sh
replica assignment of partitions for the specified topics onto the set of
specified brokers.

ZooKee
per-
based
admin
tools

`AdminUtils.
assignReplicasToBrokers`

For all the methods in the above table that are used in the context of both Kafka API request handling paths and ZooKeeper-based admin tools (`AdminUtil
), we will pass s.assignReplicasToBrokers`, `AdminZkClient.createTopicWithAssignment`, `AdminZkClient.createTopic` and `AdminZkClient.addPartitions`

the values for maximum number of partitions per broker, maximum number of partitions overall, and the current number of partitions for each broker as
arguments.

We will modify the core algorithm for replica assignment in the `AdminUtils.assignReplicasToBrokers` method. The modified algorithm will ensure that as
replicas are being assigned to brokers iteratively one partition at a time, if assigning the next partition to a broker causes the broker to exceed the max.

 limit, then the broker is skipped. If all brokers are skipped successively in a row, then the algorithm will terminate and throwbroker.partitions PolicyViolation
. The check for is much simpler and based purely on the total number of partitions that exist across all brokers.Exception max.partitions

When the methods are invoked in the context of a Kafka API call, we will get the values for the maximum number of partitions per broker by reading the ma
 configuration from the `KafkaConfig` object (which holds the current value after applying precedence rules on configuration supplied via x.broker.partitions

server.properties and those set via ZooKeeper). Similarly, we will get the maximum number of partitions overall by reading the configuration max.partitions
from the `KafkaConfig` object. We will fetch the current number of partitions for each broker from either the `AdminManager` or `KafkaControllerContext`
depending on the method.

When the methods are invoked in the context of ZooKeeper-based admin tools, we will set these limits equal to the maximum value that Java can int64
represent. This is basically because it is not easy (and we don't want to make it easy) to get a reference to the broker-specific `KafkaConfig` object in this
context. We will also set the object representing the current number of partitions for each broker to , since it is not relevant when the limits are not None
specified.

Compatibility, Deprecation, and Migration Plan
This change is backwards-compatible in practice because we will set the default values for and max.broker.partitions max.partitions equal to the maximum i

 value that Java can represent, which is quite large (2 - 1). Users will anyway run into system issues far before hitting these limits.nt64 63

In order to ease migration, a broker that already has more than number of partitions at the time at which max.broker.partitions max.broker.partitions
configuration is set for that broker, will continue to function just fine for the existing partitions although it will be unable to host any further partitions. The
Kafka administrator can later reassign partitions from this broker to another in order to get the broker to respect the limit.max.broker.partitions

Similarly, a cluster that already has more than number of partitions at the time at which configuration is set, will continue to max.partitions max.partitions
function just fine. It will however, fail any further requests to create topics or partitions. Any reassignment of partitions should work fine.

These soft behaviors are also necessary because (even with this KIP), users can bypass the limit checks by using ZooKeeper-based admin tools.

Rejected Alternatives
Add configuration to limit number of partitions per topic

Having a limit at the topic level does not help address the problem discussed in this KIP if there is large number of topics. While each topic may only have
a limited number of partitions, it is possible that there will be many more partitions than on a broker than it can handle efficiently.

Add configuration to limit the number of topics

Having a limit on the number of topics does not help address the problem discussed in this KIP if there is a large number of partitions on the topic.

Make these configurations read-only

This approach makes administration a bit easier because once the limits are set, the users of the cluster cannot accidentally change the value without
administrator privileges and without restarting the brokers. This can provide an additional safety net.

However, in environments such as Docker where it is possible to allocate more resources to the broker on the fly, it would be restrictive to not be able to
modify the and configurations on the fly as well.max.broker.partitions max.partitions

Further having these configurations be read-only is not flexible. The number of partitions that a broker can handle depends on the replication factor of
these partitions. Smaller the replication factor, lower is the incoming traffic due to replication requests that the broker has to handle. This allows the Fetch
broker to use its resources more efficiently to handle the client requests such as produce / consume. Therefore, a Kafka administrator may want to set
different values on a broker as the workload changes without disrupting operations by restarting the brokers.

Support max.broker.partitions as a per-broker configuration

This is in general a more flexible approach than the one described in this KIP and allows having different brokers with different resources, each have its
own configuration. However, this would require sending the broker-specific configuration to the controller, which needs this while max.broker.partitions
creating topics and partitions or reassigning partitions. One approach would be to put this information into the broker's ZooKeeper znode and have the
controller rely on that. And the other would be to create a new API request-response that brokers can use to share this information with the controller. Both
of these approaches introduce complexity for little gain. We are not aware of any clusters that are running with heterogenous configurations where having
different configuration for each broker would help. Therefore, in this KIP, we do not take this approach.max.broker.partitions

Use configurable topic policies for limiting number of partitions

Kafka allows plugging in custom topic creation policies via the configuration. This allows administrators to install a policy create.topic.policy.class.name
that can limit number of partitions. There are a few downsides to using this approach

such a configuration is not available for partition increase or reassignment, which even if we can address do not fix the next problem.
partition limits are not "yet another" policy configuration. Instead, they are fundamental to partition assignment. i.e. the partition assignment
algorithm needs to be aware of the partition limits. To illustrate this, imagine that you have 3 brokers (1, 2 and 3), with 10, 20 and 30 partitions
each respectively, and a limit of 40 partitions on each broker enforced via the configurable policy class. This leaves extra leg room for 30, 20 and
10 partitions respectively on the 3 brokers. This adds up to a total legroom of 60 partitions. It should be possible to create a topic with 30 partitions
and replication factor of 2 with this configuration. Assign the first 10 partitions to brokers 1 and 3; then assign the next 20 partitions to brokers 1
and 2. While the configurable policy class may accept a topic creation request for 30 partitions with a replication factor of 2 each (because it is
satisfiable), the non-pluggable partition assignment algorithm (in AdminUtils.assignReplicasToBrokers) has to do the assignment in such a way as
to not violate the partition limits.

Basically, partition limits cannot be viewed as a policy on top of topic creation. They are integral to topic creation / partition increase and reassignment.

Add configuration to limit number of partitions that a specific user can create

A large number of partitions can cause performance issues for a Kafka cluster irrespective of which user created those partitions. The focus of the KIP is to
prevent the Kafka cluster from entering into a bad state when having a large number of partitions. Therefore, it does not focus on addressing the
orthogonal use case of having partition quotas per user in a multi-tenant environment.

Appendix A: Performance with a large number of partitions
Our setup had had 3 m5.large EC2 broker instances on 3 different AZs within the same AWS region us-east-1, running Kafka version 2.3.1. Each broker
had an EBS GP2 volume attached to it for data storage. All communication was plaintext and records were not compressed. The brokers each had 8 IO
threads (), 2 replica fetcher threads () and 5 network threads ().num.io.threads num.replica.fetchers num.network.threads

A1: Producer performance

We did a performance test (using kafka-producer-perf-test.sh from a single m5.4xlarge EC2 instance). On the producer side, each record was 1 KB in size.
The batch size () and artificial delay () were left at their default values.batch.size linger.ms

The following table shows results from a producer performance test. The table indicates that throughput with 3-way replication improves from 52Mbps to
101Mbps in going from 10 to 100 partitions, but then degrades beyond that. Also, the throughput with 1-way replication is better compared to that with 3-
way replication. This is because of the number of replication requests that a broker receives increases with the number of partitions on the broker, Fetch
and having 1-way replication means that the broker does not have to deal with requests. But even so, the performance is much worse with 10000 Fetch
partitions than with 10 partitions.

Produce throughput (Mbps)

Replication Number of partitions on a broker

10 100 500 1000 5000 10000

3-way 52 101 86 12 2.5 0.9

1-way 142 113 104 99 24 16

We also stress tested the system with a single topic consisting of 30000 partitions each with 3-way replication. The producer performance test provided
basically 0 throughput. Most requests returned NOT_ENOUGH_REPLICAS error, indicating that replication is backlogged, and brokers are also unable to
handle the requests. The UnderMinIsrPartitionCount was equal to the LeaderCount on all brokers, confirming this hypothesis.Produce

A2: Topic creation and deletion times

For stress testing the system with a large number of partitions, we created a single topic with 30000 partitions with 3-way replication. It took 30 minutes for
the necessary (30000) log directories to get created on the brokers after the point in time when the PartitionCount metric indicated that the brokers have
30000 partitions each.

We then tried to delete the topic with no / traffic ongoing. However, topic deletion did not complete. From the GC logs, we noticed that all Produce Fetch
brokers had almost maxed out their allocated heap (Xmx) of 2GB, and the processes were busy in G1 garbage collection, causing the ZooKeeper sessions

to repeatedly timeout (with session timeout of 6 seconds). Restarting the brokers reduced heap usage to 800MB, but did not cause the partitions to get
deleted.

Although deletion did not happen, the LeaderCount did drop to 0 in 1 hour 40 minutes. We noticed that leadership resignation process was happening
more rapidly as the number of partitions with leadership decreased. The following table shows how long it took for the last N partitions (out of the total
30000 partitions) took to not have any leader.

We can see that leadership resignation times are exponential in the number of partitions.

Leadership resignation time (minutes)

Number of partitions left

30000 20000 10000 5000 1000 100 10

100 43 9 3 < 1 < 1 < 1

	KIP-578: Add configuration to limit number of partitions

