
KIP-585: Filter and Conditional SMTs

Status
Motivation
Public Interfaces
Proposed Changes

Predicates
TopicNameMatches
HasHeaderKey
RecordIsTombstone

Conditionally applying an SMT
The Filter SMT

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

Vote thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Single Message Transformations (SMTs) in Kafka Connect provide a convenient, code-free way to modify records from source connectors before they get
sent to a Kafka topic. In some more complex use cases it can be desired to apply SMTs dependent on some aspect of the record being processed.

For example, with there are topics which represent a schema change and topics which represent a data change, and users might want to apply Debezium
transformations selectively, based on the topic type. SMTs cannot currently do this, since they're applied to all records produced by a source connector,
irrespective of their intended topic. This problem would be solved if it was possible to apply an SMT according to the name of the topic (See KAFKA-7052
for further details).

This KIP proposes a way to only apply a particular transformation if the resource matches some condition. The condition is defined by a new interface and
the implementations for common conditions will be provided. Connector authors and users will also be able to provide their own condition implementations
for special cases, but this is not expected to be a common need.

A new SMT will also be implemented. This will filter records which do, or do not, satisfy a given condition. This is advantageous for users who do Filter
not want to incur the storage costs of consuming everything from a source connector, for example. Instead they can chose to ingest only the records of
interest. Likewise for sink connectors it will enable exporting a subset of data without needing to resort to a Kafka Streams application to filter it first.

Public Interfaces
A new interface will be added in the new package.Predicate org.apache.kafka.connect.transforms.predicates

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/rf3813bc80cdd76d594712709141e083dc07cbb6e080cf6f3d1da6cff%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r240ad5414261cb61dee5275d7e3913278599e860c9132ce95b02458a%40%3Cdev.kafka.apache.org%3E
https://debezium.io
https://issues.apache.org/jira/browse/KAFKA-7052

/**
* A condition on ConnectRecords.
* Implementations of this interface can be used for filtering records and conditionally applying
Transformations.
* Implementations must be public and have a public constructor with no parameters.
*/
public interface Predicate<R extends ConnectRecord<R>> extends Configurable, AutoCloseable {

 /**
 * Configuration specification for this predicate.
 */
 ConfigDef config();

 /**
 * Returns whether the given record satisfies this predicate.
 */
 boolean test(R record);

 @Override
 void close();
}

All transformations will gain new implicit configuration parameters which will be consumed by the connect runtime and not passed to the Transformation
 method..configure()

A new SMT will be added to enable record filtering.Filter

Proposed Changes

Predicates

The interface is described . The interface will be a worker plug-in, loaded in the same way as other worker plug-ins such as converters, Predicate above
connectors, and REST extensions. This would include aliasing behaviour allowing users to specify predicates using their simple class names as long as no
two predicate plug-ins with the same simple name are available on the worker.

In order to apply a transformation conditionally, all transformations will implicitly support a String configuration parameter, which names a predicate
particular predicate.

To negate the result of a predicate, all transformations will implicitly support a boolean configuration parameter, which defaults to false.negate

In addition to the interface described above, this KIP will provide the following implementations:Predicate

TopicNameMatches

test() will return true when the (i.e. it's name) matches a given Java regular expression pattern.ConnectRecord.topic()

Config name Type Default Required

pattern String null yes

HasHeaderKey

test() will return true when the has 1 or more headers with a given key.ConnectRecord.headers()

Config name Type Default Required

name String null yes

RecordIsTombstone

test() will return true when the represents a tombstone (i.e. has a null value). This predicate has no configuration parameters.ConnectRecord

Conditionally applying an SMT

When a Transformation is configured with the new parameter its application will happen conditionally. The value of the parameter predicate predicate
will be the name of a predicate defined under the prefix. Configuration for the predicate will come from all other configuration parameters predicates
starting with the same analogous to how the transformations in a transformation chain are configured. These will be supplied to the predicates... Pred

 method.icate.configure(Map)

If during processing the predicate throws an exception this will be handled in the same way as errors in transformations.

Consider the following example of a transformation chain with a single conditionally applied SMT:ExtractField$Key

transforms=t2
transforms.t2.predicate=has-my-prefix
transforms.t2.negate=true
transforms.t2.type=org.apache.kafka.connect.transforms.ExtractField$Key
transforms.t2.field=c1
predicates=has-my-prefix
predicates.has-my-prefix.type=org.apache.kafka.connect.predicates.TopicNameMatch
predicates.has-my-prefix.pattern=my-prefix-.*

The transform is only evaluated when the predicate is false (the parameter). That predicate is configured by the keys with t2 has-my-prefix negate
prefix The predicate class is and it's predicates.has-my-prefix. org.apache.kafka.connect.predicates.TopicNameMatch pattern
parameter has the value . Thus the SMT will be applied only to records where the topic name does not start with .my-prefix-.* my-prefix-

The benefit of defining the predicate separately from the transform is it makes it easier to apply the same predicate to multiple transforms, or to have one
set of transforms predicated on one predicate and another set of transforms predicated on that predicates negation.

The Filter SMT

A new transformation will be added in the existing package. This will return null from Filter org.apache.kafka.connect.transforms apply
. This is not of much use on its own, but is intended to applied conditionally as described above. This will allow messages to be filtered (ConnectRecord)

according to the predicate.

Consider the following example of a transformation chain with a single SMT:Filter

transforms=filter
transforms.filter.type=org.apache.kafka.connect.transforms.Filter
transforms.filter.predicate=foo-or-bar
predicates=foo-or-bar
predicates.foo-or-bar.type=org.apache.kafka.connect.transforms.predicates.TopicNameMatch
predicates.foo-or-bar.pattern=foo|bar

The predicate class is and it takes a single configuration parameter, . org.apache.kafka.connect.predicates.TopicNameMatch pattern
Records having a topic name "foo" or "bar" match the predicate, so the SMT will be evaluated, will return null and therefore those records are filter
filtered out.

Compatibility, Deprecation, and Migration Plan
Users will need to perform a rolling upgrade of a distributed connect cluster before they can start using the new SMT or conditional SMTs.Filter

Adding the new implicit and parameters to transformations means that any existing transformation which already took config predicate negate
parameters of these names would not be configurable (i.e. the implicit parameters will mask the transformation parameters of the same name). Similarly
existing connectors might have a configuration parameters prefixed by , which would be masked by the new top-level parameter. The predicates
analogous situation arose when support for SMTs was originally added in .KIP-66

Rejected Alternatives
Numerous alternative ways to configure conditional SMTs which reduced or removed the possibility of collision with existing connectors were
considered. They were more verbose and difficult to understand.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect#KIP-66:SingleMessageTransformsforKafkaConnect-Compatibility,Deprecation,andMigrationPlan

	KIP-585: Filter and Conditional SMTs

