
1.

2.

a.
b.
c.

1.
2.

KIP-601: Configurable socket connection timeout in
NetworkClient

Status
Motivation
Public Interfaces
Proposed Changes

NetworkClient
ClusterConnectionStates
When would the connection timeout increase?
Relationship between the proposed connection timeout, existing request timeout, and existing API timeout

Connection timeout dominates both request timeout and API timeout
Neither request timeout or API timeout dominates connection timeout

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently, the socket connection timeout is depending on system setting . The timeout value is 2 ^ (+ 1) - 1 tcp_syn_retries tcp_sync_retries
seconds. For the reasons below, we want to control the client-side socket timeout directly using configuration files.

The default value of may be large, such as 6 for Linux. It means the default timeout value is 127 seconds for finishing the three-tcp_syn_retries
way handshake. A shorter timeout at the transportation level will help clients detect dead nodes faster. The existing configuration “request.timeout.

” sets an upper-bound of the time used by both the transportation and application layer whose complexity varies. It’s risky to lower “ms request.
” for detecting dead nodes quicker because of the involvement of the application layer logic.timeout.ms

The existing configuration " " is not able to time out the connections properly. Because " " only affects in-request.timeout.ms request.timeout.ms
flight requests, the connecting node won't get disconnected after " " hits, which may cause side effects. For example, the request.timeout.ms
leastLoadedNode() provides a cached node with the criteria below.

Provide the connected node with least number of inflight requests
If no connected node exists, provide the connecting node with the largest index in the cached list of nodes.
If no connected or connecting node exists, provide the disconnected node which respects the reconnect backoff with the largest index in
the cached list of nodes.

A node will remain the "connecting" status until 2 ^ (+ 1) - 1 seconds elapsed, even if the requests binding to this node tcp_sync_retries
timed out. So the leastLoadedNode() might keep providing this same node and other nodes won't get a chance to process any requests. For
example, when the user specifies a list of N bootstrap-servers and no connection has been built between the client and the servers, the least
loaded node provider will poll all the server nodes specified by the user. If M servers in the bootstrap-servers list are offline, the client may
take (127 * M) seconds to connect to the cluster. In the worst case when M = N - 1, the wait time can be several minutes.

Considering the potential approval of KIP-612 which proposes to throttle connection setup, we propose an exponential connection setup timeout to help
the NetworkClient

Detect the dead node faster and try the request on other nodes if applicable
Be able to wait longer and longer for finishing the connection if the broker side connection setup is throttled.

Public Interfaces
We propose two new common client configs

socket.connection.setup.timeout.ms: The amount of time the client will wait for the initial socket connection to be built. If the connection is not built
will before the timeout elapses the network client close the socket channel. The default value will be 10 seconds.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/rb4e08e9710a30eebd0e2690f504340a5501bb9164d98f566ebf01384%40%3Cdev.kafka.apache.org%3E
http://request.timeout.ms
http://request.timeout.ms
http://request.timeout.ms
http://request.timeout.ms
http://request.timeout.ms
http://request.timeout.ms
http://request.timeout.ms

1.
2.

3.
a.
b.
c.

1.
2.
3.

a.
b.
c.

1.
2.

1.
2.
3.

socket.connection.setup.timeout.max.ms: The maximum amount of time the client will wait . The connection for the initial socket connection to be built
setup timeout will increase exponentially for each consecutive connection failure up to this maximum. To avoid connection storms, a randomization factor
of 0.2 will be applied to the backoff resulting in a random range between 20% below and 20% above the computed value. The default value will be 127
seconds.

The formula to calculate the latest connection setup timeout is as follows, where the random factor is to prevent connection storms:

MIN(, *socket.connection.setup.timeout.max.ms socket.connection.setup.timeout.ms 2 ^ (failures - 1) * random(0.8,
 1.2))

Proposed Changes

NetworkClient

The new config will be a common client config. The will keep the proposed configs as new properties.NetworkClient
NetworkClient.poll() will iterate all connecting nodes and disconnect those timed out connections using the exact approach as it handles “request

” .timeout.ms
The node providing criteria in the C leastLoadedNode() will also change accordingly. Now the criteria should look like below:

Provide the connected node with least number of inflight requests
If no connected node exists, provide the connecting node with the largest index in the cached list of nodes.
If no connected or connecting node exists, provide the disconnected node which respects the reconnect backoff and is least recently
provided. Consider the case when we have multiple DISCONNECTED nodes and the time interval between the two provide() invokes is
greater than reconnect.backoff.ms. The Provider can provide the same nodes all the time. Thus, the provider should provide the least
recently provided nodes among all nodes passing the canConnect() check.

ClusterConnectionStates

Add a new property keeping all the connecting node ids.HashSet ConnectingNodes
Will expose a public API that returns the mentioned in #1, helping the process the timeout iteration.ConnectingNodes NetworkClient
State transition:

ClusterConnectionStates.connecting() will add the node id to ConnectingNodes
ClusterConnectionStates.ready() will remove the node id to ConnectingNodes
ClusterConnectionStates.disconnected() will remove the node id from ConnectingNodes

When would the connection timeout increase?

Every time the timeout hits, the timeout value of the next connection try will increase. The timeout will hit iff a connection stays at the ` ` state connecting
longer than the timeout value, as indicated by The connection state of a node will change iff ClusterConnectionStates.NodeConnectionState. Selection

 is detected by The connection state may transit from ` ` to Key.OP_CONNECT nioSelector.Select(). connecting

`disconnected` when throws .SocketChannel.finishConnect() IOException
`connected` when return .SocketChannel.finishConnect() TRUE

In other words, the timeout will hit and increase iff the interested doesn't happen before the timeout arrives, which means, SelectionKey.OP_CONNECT
for example, network congestion, failure of the ARP request, packet filtering, routing error, or a silent discard may happen.

Relationship between the proposed connection timeout, existing request timeout, and existing API
timeout

Connection timeout dominates both request timeout and API timeout

When connection timeout hits, the connection will be closed. The client will be notified either by the responses constructed by NetworkClient or the
callbacks attached to the request. As a result, the request failure will be handled before either connection timeout or API timeout arrives.

Neither request timeout or API timeout dominates connection timeout

Request timeout: Because request timeout only affects in-flight requests, after the API NetworkClient.ready() is invoked, the connection won't get closed
after " ” hits. Beforerequest.timeout.ms

the SocketChannel is connected
SSL handshake finished
authentication has finished (SASL)

, clients won't be able to invoke NetworkClient.send() to send any request, which means no in-flight request targeting to the connection will be added.

API timeout: In API timeout acts by putting a smaller and smaller timeout value to the chain of requests in a same API. After the API AdminClient,
timeout hits, the retry logic won't close any connection. In , API timeout acts as a whole by putting a limit to the code block executing time. The consumer
retry logic won't close any connection as well.

http://socket.connections.setup.timeout.max.ms
http://socket.connections.setup.timeout.ms
http://request.timeout.ms
http://request.timeout.ms
http://reconnect.backoff.ms
http://request.timeout.ms

1.
a.
b.
c.

2.

a.

3.

a.
4.

a.

b.

c.

d.

Compatibility, Deprecation, and Migration Plan
No impact

Rejected Alternatives
Use to time out the socket connection at the client level instead of the network client levelrequest.timeout.ms

request.timeout.ms is at the client/request level. We need one in the NetworkClient level to control the connection states.
The transportation layer timeout should be relatively shorter than the request timeout. It's good to have a separate config.
In some scenarios, is not able to time out the connections properly.request.timeout.ms

Use the number of failed attempts as the prioritizing rules to choose between disconnected nodes in () when no connected or leastLoadedNode
connecting node exists.

"For example, if a new node joins the cluster, it will have 0 failed connect attempts, whereas the existing nodes will probably have more
than 0. So all the clients will ignore every other node and pile on to the new one." CR to Colin McCabe

Add a new connection state besides , , , , and TIMEOUT DISCONNECTED CONNECTING CHECKING_API_VERSIONS READY AUTHENTICATI
. ON_FAILED

We don't necessarily need to differentiate the timeout and disconnected states.
a lazy socket connection time out. That is, the will only check and disconnect timeout connections in NetworkClient leastLoadedNode().

Pros:
Usually, when clients send a request, they will ask the network client to send the request to a specific node. In these cases, the connecti

 won’t matter too much because the client doesn’t want to try other nodes for that specific request. The request level on.setup.timeout
timeout would be enough. The metadata fetcher fetches the status of the nodes periodically so the clients will reassign the timeout
request correspondingly to a different node.
Consumer, producer, and are all using for metadata fetches, where the connection setup timeout can AdminClient leastLoadedNode()
play an important role. Unlike other requests can refer to the metadata for node condition, the metadata requests can only blindly choose
a node for retry in the worst scenario. We want to make sure the client can get the metadata smoothly and as soon as possible. As a
result, we need this .socket.connection.setup.timeout.ms
Implementing the timeout in or anywhere else might need an extra iteration of all nodes, which might downgrade NetworkClient.poll()
the network client performance.
Clients fetch metadata periodically which means will get called frequently. So the timeout checking frequency is leastLoadedNode()
guaranteed.

 However, we need a more common and universal timeout for all connections. New scenarios may jump out beside the current metadata fetching
scenario

https://cwiki-test.apache.org/confluence/display/~cmccabe

	KIP-601: Configurable socket connection timeout in NetworkClient

