
KIP-612: Ability to Limit Connection Creation Rate on
Brokers

Status
Motivation
Public Interfaces

Broker configurations for broker-wide and per-listener connection rate limits
Dynamic configurations for a new entity type IPs
Tools
Connection rate throttling behavior
Metrics

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Broker configurations to set limits on per IP connection attempt rates
Use incrementalAlterConfigs/describeConfigs for IP quotas

Status
Current state: Accepted

Discussion thread: here

JIRA:

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Creating a new connection adds CPU overhead to the broker. mitigated the issue of connection storm due to un-authorized connections (e.g., KIP-306
misconfigured clients). However, connections storms may also come from (mostly) well-behaved clients. One example is when deploying a new application
may cause temporary connection storm due to a large number of clients starting up and creating connections to the cluster at the same time. Another
example is clients that create a new connection for each produce/consume request, causing high connection rate to the brokers. A very high connection
creation rate may stop broker from doing other useful work, causing high request latencies or even URPs.

To address this issue, the KIP proposes to add the ability to set a limit on the rate with which the broker accepts new connections. To ensure that some
clients do not take over most of the connection creation rate quota, the KIP also adds the ability to set a limit on connection creation rate per IP.

Public Interfaces

Broker configurations for broker-wide and per-listener connection rate limits

A new broker configuration option will be added to limit the total rate at which non-inter-broker connections will be accepted on the broker. Connections on
the inter-broker listener will be permitted even if the configured broker-wide limit is reached. This will be a dynamic config that can be updated without
restarting the broker.

Config option: Name: Type: Default value: max.connection.creation.rate Int Int.MaxValue

The config may be prefixed with a listener prefix to specify a different listener-specific limit: listener.name.{ }.max.connection.listenerName
. Listener-specific limits will be applied in addition to the broker-wide limit. If a listener-specific limit is not specified, each listener can creation.rate

create connections with the rate up to the broker-wide limit as long as the total rate is also within the broker-wide limit. If a broker has multiple listeners,
connections on the inter-broker listener will always succeed as long as connection creation rate is within that listener's rate limit. The behavior of the
proposed broker-wide and per-listener configs is consistent with max.connections broker configuration ().KIP-402

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/r61162661fa307d0bc5c8326818bf223a689c49e1c828c9928ee26969%40%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-306%3A+Configuration+for+Delaying+Response+to+Failed+Client+Authentication
https://cwiki.apache.org/confluence/display/KAFKA/KIP-402%3A+Improve+fairness+in+SocketServer+processors

Dynamic configurations for a new entity type IPs

Per-IP connection creation rate quota will be configured as a dynamic quota for entity type .ips

Default quota for <IPs> will be stored in Zookeeper at /config/ips/<default>
Quota for a specific IP address for which quota override is defined will be stored in Zookeeper at /config/ips/<ip-address>

If per-IP or default IP quota is not configured, we will use Int.MaxValue as a default to ensure backward compatibility.

We will use the and APIs to manage IP connection rate quotas. Adding support for IP quotas will not AlterClientQuota DescribeClientQuota
require any changes to the protocol, since entity type and name are represented flexibly as Strings. For ease of use, we will define a new recognized IP
entity type in org.apache.kafka.common.quota.ClientQuotaEntity:

/**
 * Describes a client quota entity, which is a mapping of entity types to their names.
 */
public class ClientQuotaEntity {

 /**
 * The type of an entity entry.
 */
 public static final String USER = "user";
 public static final String CLIENT_ID = "client-id";
 public static final String IP = "ip";
}

Since IP quotas are orthogonal with user/client ID quotas the following is to disambiguate how the new entity will interact with the existing IP client-id
and entities.user

A constructed with a filter for both ip entities and either of user or client-id represents a logical of IP quotas and DescribeClientQuotasRequest AND
user/client quotas. However, since there are no quotas that satisfy both IP and either of user/client-id, such a request is likely due to user error. In such a
case we will return an error.INVALID_REQUEST

Likewise, an with both an IP entity and either of user or client-id entity will return an error, as there AlterClientQuotasRequest INVALID_REQUEST
are no shared quota properties between the two entity types.

Tools

kafka-configs.sh will be extended to support per-IP connection rate quotas. A new entity type will be added with the following key (and a value of IPs
type Int):

connection_creation_rate : The total connection rate limit for the connections from a specific IP address.

For example:

bin/kafka-configs --bootstrap-server localhost:9091 --alter --add-config 'connection_creation_rate=100' --entity-
name 93.284.53.13 --entity-type ips

bin/kafka-configs --bootstrap-server localhost:9091 --alter --add-config 'connection_creation_rate=100' --ip
93.284.53.13

Default connection rate quotas for an IP address can be configured via the following:

bin/kafka-configs --bootstrap-server localhost:9091 --alter --add-config 'connection_creation_rate=100' --entity-
type ips --entity-default

bin/kafka-configs --bootstrap-server localhost:9091 --alter --add-config 'connection_creation_rate=100' --ip-
defaults

Connection rate throttling behavior

The connection creation rate limits will be applied to the same quota window configuration (with 1 second default) as quota.window.size.seconds
existing produce/fetch quotas and request rate quota (). Since limit on connection creation rate on the broker is also a type of quota, this approach KIP-124
will keep it consistent with the existing quota implementations on the broker. If connection creation rate on the broker exceeds the broker-wide limit, the
broker will delay accepting a new connection by an amount of time that brings the rate within the limit. If a listener-specific limit is specified, and the
connection rate on that listener exceeds the limit, the broker will delay accepting new connection on that listener by an amount of time that brokers the rate
of the listener within the listener limit. The maximum delay applied will be the quota window size (which also means that the minimum connection rate limit
is effectively 1 connection creation / second).

https://cwiki.apache.org/confluence/display/KAFKA/KIP-124+-+Request+rate+quotas

Since the broker has to accept the connection in order to know the IP address, limiting connection creation rate per IP means that the enforcement of the
limit has to happen after connection is accepted. Dropping the connection right away as broker does for per-IP connection count limits (KIP-402) does not
work as well for connection rate limiting, because the offending client is likely to immediately reconnect. At the same time, connection rate limiting by only
delaying processing of connections would not work for cases where the connection creation rate is continuously higher than the set limits, which would
create a large backlog. This case could be more common for clients that come through a proxy, and where there could be potentially a large number of
incoming connections with the same IP. To address these two issues, our approach is as follows. If connection creation rate is reached for a specific IP
address, the broker will delay processing the connection by an amount of time that brings the rate within the limit or 1 second, whichever is earliest. After
the delay, if the per-IP quota is still violated, the connection will be cleaned up; otherwise, the connection will be accepted.

Metrics

New metrics that track broker-wide or per-listener rate of accepting connections, and are used by SocketServer to detect connection acceptance rate
quota violation:

 kafka.network:type=socket-server-metrics,name=connection-accept-rate,listener={listenerName}

Type: Rate
Description: Rate of connections accepted per second on a given listener

 kafka.network:type=socket-server-metrics,name=broker-connection-accept-rate

Type: Rate
Description: Broker-wide rate of connections accepted per second

 kafka.network:type=socket-server-metrics,name=connection-accept-rate,ip={ipAddress}

Type: Rate
Description: Rate of connections accepted per second for a given IP

New metrics that track average throttle time of accepting a new connection due to reaching connection acceptance rate limit:

kafka.network:type=socket-server-metrics,name=connection-accept-throttle-time,listener={listenerName}

Type: SampledStat.Avg
Description: Average throttle time due to violating per-listener or broker-wide connection acceptance rate quota on a given listener.

kafka.network:type=socket-server-metrics,name=ip-connection-accept-throttle-time,listener={listenerName}

Type: SampledStat.Avg
Description: Average throttle time due to violating ip connection rate quota on a given listener. IP throttling is reported at a listener
granularity rather than at an IP granularity to keep a smaller metrics overhead.

The existing metric () that tracks the amount of kafka.network:type=Acceptor,name=AcceptorBlockedPercent,listener={listenerName}
time is blocked from accepting connections will now additionally include the amount of time is blocked due to hitting connection Acceptor Acceptor
create limit (in addition to the time blocked due to hitting the maximum limit on currently active connections).

Proposed Changes
The broker will track connection acceptance rates, broker-wide, per every listener and per IP, via sensors that wrap the metric with the Rate MetricConf

. will be set to the corresponding configured connection creation rate limit. When accepts a new connection, the ig MetricConfig#quota Acceptor
broker-wide and the corresponding listener's metric will be incremented. When the actual connection creation rate exceeds either broker-wide or listener-
specific quota, quota violation exception will be thrown. On quota violation, the broker will calculate the delay needed to bring the metric within quota by
using the same formula implemented in . The thread will wait for the delay duration before accepting ClientQuotaManager.throttleTime Acceptor
new connections. The maximum delay applied will be the quota window size (1 second by default).

Most of this logic will be added to class, which currently throttles thread to limit the number of active connections. ConnectionQuotas Acceptor Connec
 class be extended to enforce both the number of active connections and connection creation rate. This proposal adds another condition tionQuotas

when the thread waits, which will be implemented as delaying accepting a new connection based on whichever limit is reached first:Acceptor

If the number of active connections is below the limit, but broker hits the connection rate limit, the will wait for the calculated delay that Acceptor
brings the connection creation rate metric within quota.
If there are no available active connection slots, the broker waits for the new slot independent of whether connection rate exceeds quota or not.

When quota violation happens due to reaching the limit for a IP address, we will calculate the delay = min(delay required to bring the rate within the quota,
1 second). We will re-use the same mechanism implemented with KIP-306 where the broker delays the response for failed client authentication. When the
delay passes, we will check for quota violation again. The connection will be cleaned up (dropped) if the quota is still violated, or the connection will be
added to one of the Processor queues for processing (accepted).

Compatibility, Deprecation, and Migration Plan
The feature is backward compatible, because the default configuration will have a legacy behavior: No connection creation rate limit.

There will be no impact on existing users.

Rejected Alternatives

Broker configurations to set limits on per IP connection attempt rates

Add broker configurations for setting the default per-IP connection attempt limit and per-IP limit overrides:

Config option: Name: Type: Default value: max.connection.creation.rate.per.ip Int Int.MaxValue

Config option: Name: Type: Default value: max.connection.creation.rate.per.ip.overrides String ""

We chose the option of making per-IP quota similar to other quotas, configured as a dynamic quota for entity type "ip" as well as defaults.

Use incrementalAlterConfigs/describeConfigs for IP quotas

DescribeConfigsRequest requires the user to specify a list of which consists of a and for which to retrieve the desired ConfigResource Type Name
configs. An empty name indicates that we want to describe the configs for the entity type default. This works well for describing broker and topic configs,
because the full list of brokers and topics is retrievable via other requests.

However, for IPs there is no mechanism for IP discovery, and has no way to indicate that a request should list all configs for DescribeConfigsRequest
an entity type without also giving a list of entity names. This would make discovery of which IPs have a connection rate quota unfeasible, so this was
rejected.

	KIP-612: Ability to Limit Connection Creation Rate on Brokers

