
1.

1.
2.
3.

1.
2.

KIP-619: Add internal topic creation support

Status
Motivation
Public Interfaces
Proposed Changes

Server-side:
Internal topic metadata propagation
Internal topic behaviors

ACL:
Metadata:

Client-side:
Post ZK world

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA: Not created yet

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka and its upstream applications treat internal topics differently from non-internal topics. For example:

Kafka does not allow user-defined internal topics.
Internal topic partitions cannot be added to a transaction
Internal topic records cannot be deleted
Producing to internal topics might get rejected

Clients and upstream applications may define their own internal topics. For example, Kafka Connect defines `connect-configs`, `connect-offsets`, and
`connect-statuses`. Clients are fetching the internal topics by sending the MetadataRequest (ApiKeys.METADATA).

However, clients and upstream application cannot register their own internal topics in servers. As a result, servers have no knowledge about client-defined
internal topics. They can only test if a given topic is internal or not simply by checking against a static set of internal topic string, which consists of two
internal topic names `__consumer_offsets` and `__transaction_state`. As a result, MetadataRequest cannot provide any information about the client
created internal topics.

To solve the pain point, I'm proposing support for clients to register and query their own internal topics.

Public Interfaces
TopicConfig will have a new topic config `internal`, which indicates if the topic is internal or not.

Proposed Changes

Server-side:

Internal topic metadata propagation

The static internal topic testing is defined in Topic.java. At server-side, it's dependents are:

KafkaApis
MetadataCache
ReplicaManager

Both ReplicaManager and KafkaApi keep the mutable MetadataCache, which provides the metadata for each topic partition. Instead of testing internal
topics against a hard-coded set of string, the server should refer the cached metadata for the internal topic testing. To achieve this,
UpdateMetadataPartitionState will keep the information if the topic is internal.

Below will be the workflow about how the internal topic information gets propagated to all servers.

When a topic gets created, clients will pass the topic config `internal`. Zookeeper will be aware of the client-created internal topics.

https://lists.apache.org/thread.html/rab5ddec7c5fb02cf4238e1f2734b94af37bfba0de4b1c35443824598%40%3Cdev.kafka.apache.org%3E

2.
3.

1.
a.

2.

a.

KafkaZkClient will be able to query all the internal topics.
KafkaController can then utilize the information provided by KafkaZkClient and wrap a boolean field in its UpdateMetadataRequests for
propagating the internal topic information to all servers.

After this process, all servers will be aware of the latest set of internal topics and can cache internal topics in MedatadaCache. Thus, that KafkaApi can
construct the metadata response with the information of all clients created internal topics by referring MetadataCache.

Internal topic behaviors

Let's denote

topics `__consumer_offsets` and `__transaction_state` as system-defined internal topics,
topics whose config contain `internal=true` as user-defined internal topics.

ACL:

Below will be the default allowed operations for internal topics. Cluster admin might want to add restrictions using ACLs on user-defined internal topics
depending on the actual user application logic.

system-defined internal topics user-defined internal topics

Topic creation (ApiKeys.
CREATE_TOPICS)

allowed allowed

Topic deletion (ApiKeys.
DELETE_TOPICS)

forbidden allowed

Produce (ApiKeys.PRODUCE) forbidden allowed

Add to transaction (ApiKeys.
ADD_PARTITIONS_TO_TXN)

allowed allowed

Metadata:

For the metadata operation, user-defined internal topics will be treated in the same way as system-defined internal topics. For example, in the metadata
request (`ApiKeys.METADATA`), broker will mark both user-defined internal topics and system-defined internal topics as `internal`.

Client-side:

To get the internal topic information, instead of using the static internal topic testing or implementing their own logic, clients can utilize KafkaAdminClients
and make a MetadataRequest (ApiKey.METADATA).

Post ZK world

KIP-500 proposed metadata quorum. Since the changes proposed in this KIP interact directly with KafkaApi instead of Zookeeper and modifies the cached
metadata, it should be easily migrated in Post ZK world.

Compatibility, Deprecation, and Migration Plan
In the current version, users might create a topic with the configuration internal = true. After the changes in this proposal got adopted, the semantic of this
configuration would change and might break the expected behavior. The upstream application must change the topic config key from `internal` to
something else and change the application logic if necessary.

Rejected Alternatives
Specify a naming convention that all internal topic should start with the prefix `_`.

It's hard to make all clients adjust their topic names.
Change several public APIs to make the clients pass a flag indicating if the topic is internal or not when it creates a topic. Add a new ZK path such
as `topics/internal`.

May require a new flag in TopicCommand

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum

	KIP-619: Add internal topic creation support

