
KIP-625: Richer encodings for integral-typed protocol fields

Status
Motivation

An example: MetadataResponse
Scope

Public Interfaces
Example

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: [Change the link from the KIP proposal email archive to your own email thread]here

JIRA: KAFKA-9927

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The Kafka protocol already supports variable length encodings for integers. Specifically, added support for using an unsigned variable length KIP-482
integer encoding for the length of variable length data (strings, arrays, bytes) and for integer quantities in tagged fields. However it is currently not possible
to use a variable length encoding for regular fields with an integral (short, integer or long) type.

Varints encode two's complement signed ints or longs using a variable number of bytes such that "smaller numbers" require fewer bytes. The trade-off is
that larger ints can require up to 5 or 9 bytes (as oposed to the 4 or 8 bytes that a fixed encoding would require).

For 32-bit integers encoded using a "signed" variable length encoding, the histogram of int value to number of encoded bytes looks like this:

ints in [-2147483648,-134217727] require 5 bytes
ints in [-134217728,-1048575] require 4 bytes
ints in [-1048576,-8191] require 3 bytes
ints in [-8192,-63] require 2 bytes
ints in [-64,63] require 1 byte
ints in [64,8191] require 2 bytes
ints in [8192,1048575] require 3 bytes
ints in [1048576,134217727] require 4 bytes
ints in [134217728,2147483647) require 5 bytes

This can be represented as a histogram (with a non-linear x axis):

#bytes
5 |-------- --------
4 | ------ ------
3 | ---- ----
2 | -- --
1 | -
 +--- value
 0

For 32-bit integers encoded using a "unsigned" variable length encoding, the histogram of int value to number of encoded bytes looks like this:

ints in [0,127] require 1 byte
ints in [128,16383] require 2 bytes
ints in [16384,2097151] require 3 bytes
ints in [2097152,268435455] require 4 bytes
ints in [268435456,4294967296) require 5 bytes

Or, as a histogram:

https://lists.apache.org/thread.html/r1a23f26be426231dc72f66b522620472b04a7aeeb9f40ee842ed0e21%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-9927
https://cwiki.apache.org/confluence/display/KAFKA/KIP-482%3A+The+Kafka+Protocol+should+Support+Optional+Tagged+Fields

#bytes
5 | ----------------
4 | ------------
3 | --------
2 | ----
1 |-
 +--- value
 0

Numerous existing PRCs use Java , or for quantities which have a histogram with a predictable shapeshorts ints longs

Broker ids are usually numbered sequentially from 0, 1 or perhaps 1000, and are typically less than 16383.
"Replica ids" and "leader ids" are just broker ids.
Partition ids are numbered sequentially from 0, and would typically be less than 16383
Error codes are numbered sequentially from -1.

Using variable length encodings for these quantities in Kafka protocol messages would make those message smaller. For some RPCs the messages could
be substantially smaller.

An example: MetadataResponse

Taking as an example, and looking just at the deeply nested the current schema is:MetadataResponseData MetadataResponsePartition

{ "name": "ErrorCode", "type": "int16", "versions": "0+",
 "about": "The partition error, or 0 if there was no error." },
{ "name": "PartitionIndex", "type": "int32", "versions": "0+",
 "about": "The partition index." },
{ "name": "LeaderId", "type": "int32", "versions": "0+", "entityType": "brokerId",
 "about": "The ID of the leader broker." },
{ "name": "LeaderEpoch", "type": "int32", "versions": "7+", "default": "-1", "ignorable": true,
 "about": "The leader epoch of this partition." },
{ "name": "ReplicaNodes", "type": "[]int32", "versions": "0+", "entityType": "brokerId",
 "about": "The set of all nodes that host this partition." },
{ "name": "IsrNodes", "type": "[]int32", "versions": "0+",
 "about": "The set of nodes that are in sync with the leader for this partition." },
{ "name": "OfflineReplicas", "type": "[]int32", "versions": "5+", "ignorable": true,
 "about": "The set of offline replicas of this partition." }

The current fixed length encoding requires

size = 2 // errorCode
 + 4 // partitionIndex
 + 4 // leaderId
 + 4 // leaderEpoch
 + 1 // size of replicaNodes (assuming best case)
 + 4 × replica // replicaNodes
 + 1 // size of isrNodes (assuming best case)
 + 4 × isr // isrNodes
 + 1 // size of offlineReplicas (assuming best case)
 + 4 × offline // offlineReplicas
 = 17 + 4×(replica + isr + offline) in the best case

If the schema for used the unsigned variable length encoding for all fields then in the best case we get the formula:MetadataResponsePartition

Note

It is important to understand that the use of term "signed" or "unsigned" here does not refer to the signed-ness of the Java or which is int long
serialized (Java and are always signed), but rather to how the encoding is more efficient for a range of numbers which are, roughly, int long
symmetric about zero, or a range whose lower bound is zero.

size = 1 // errorCode
 + 1 // partitionIndex
 + 1 // leaderId
 + 1 // leaderEpoch
 + 1 // size of replicaNodes (assuming best case)
 + 1 × replica // replicaNodes
 + 1 // size of isrNodes (assuming best case)
 + 1 × isr // isrNodes
 + 1 // size of offlineReplicas (assuming best case)
 + 1 × offline // offlineReplicas
 = 7 + R + I + O in the best case

More concretely, benchmarking a (just the body, excluding the header) containing a single 100 partition topic replicated across two MetadataResponse
brokers suggests that:

Encoding Size/byte Struct Serialize/µs Struct Deserialize/µs Buffer Serialize/µs Buffer Deserialize/µs

fixed 3216 56,458 14,416 7,215 11,508

variable (best case) 1170 65,226 14,713 7,667 10,155

variable (worst case) 4026 81,328 14,755 21,400 17,681

The worst case would occur if the cluster had brokers with ids greater than 134,217,727, and for topics with more than that many partitions and where the
error code was >255.

Since most of the data in a typical is partition data, such a change would make typical responses substantially smaller.MetadataResponse

Scope

This KIP proposes a mechanism for allowing RPCs (including new versions of existing RPCs) to use varints.
It does propose any changes to existing RPC messages to make use of the new encoding. not
It is envisaged that RPCs will make use of this functionality as those RPCs get changed under other KIPs and guided by benchmarking about the costs
and benefits.

Public Interfaces
Field specs in the protocol message JSON format will get support for a new property, which will define, for each of the field, how the encoding version
value should be encoded. This approach makes encoding a first-class concept, separating the logical type of a field from how it is encoded on the wire.

The value of the property will be either a JSON object or a JSON string:encoding

When it is an object each key defines a version range and the corresponding value is named encoding used for the field for those versions.
When it is a string the value is the named encoding to be used for all versions defined in the FieldSpec's property.versions

It will be a generation-time error if:

encoding is present on a field spec with type other than , or .int16 int32 int64
the union of the versions defined by do not exactly equals the of the field.encoding versions
any pair of version ranges defined by have a nonempty intersection.encoding

The names of the supported encodings match the regular expression . "upacked" is short for "unsigned (fixed|packed|upacked)(16|32|64)
packed". For example:

fixed32 is the fixed-size encoding of a 32 bit integer
packed32 is variable signed encoding of a 32 bit integer

Any other value for an encoding name will be a generation-time error.

The default when no is present on a field is to use the fixed encoding of the appropriate type.encoding

Example

{ "name": "LeaderId",
 "type": "int32",
 "versions": "0+",
 "entityType": "brokerId",
 "about": "The ID of the leader broker.",
 "encoding": {
 "0-9": "fixed32",
 "10+": "unsigned32"
}}

Proposed Changes
The message generator will be modified to encode values using the encoding defined for the message's version and relevant .type

Compatibility, Deprecation, and Migration Plan
The proposal is backwards compatible: Clients using existing API versions will continue to use fixed-size encoding.

New versions of existing RPC messages will be able to use variable length encoding on a per-field basis.

Rejected Alternatives
Simply adding support for types would in its own allow these types to be used for existing fields.varint32

Including the number of bits in the name of the (when it's already present in the fields) provides a path to evolving field encoding type
schemas from 32 to 64 bits. Specifically, a field might originally have been defined

{ "name": "tooSmall", "type": "int32", ... }

This could be changed (e.g. in version 2 of the message) to:

{ "name": "tooSmall", "type": "int64",
 "encoding": { "0-1": "fixed32", "2+", "2+": "fixed64"} }

This change would result in type of the property in the Java representation changing from to (a one-time refactoring). But tooSmall int long
protocol compatibility would be maintained because:

In versions 0 and 1 an (using fixed encoding) would be read from the buffer, and promoted to a . When writing, the `long` the int long
value would be range checked prior to downcasting to a and writing using the fixed encoding.int
In versions 2 and above a (using fixed encoding) would be read from the buffer. When writing the value would be written long long
using the fixed encoding.

Using this mechanism:

fields can evolve between fixed and variable length encodings without any refactoring of the Java code, requiring only a RPC version
change.
fields can evolve from fewer to more numbers of bits between versions requiring only a one-off refactoring. Contrast this to having two
distinct fields of different types (and thus different names) existing in different versions of a message.

	KIP-625: Richer encodings for integral-typed protocol fields

