
KIP-649: Dynamic Client Configuration

Status
Motivation

Producer Configs
Consumer Configs

Background
Public Interfaces

Network Protocol
Proposed Changes

Admin Client Changes
Broker Changes
Producer Changes
Consumer Changes
Command Line Changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Making client config compatibility information available to the user

Status
Current state: Under Discussion

Discussion thread: here

JIRA:

PR (In-progress): https://github.com/apache/kafka/pull/9101

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Producer and consumer configurations are currently reconfigurable only by restarting the client. Allowing the user to dynamically reconfigure misbehaving
clients would eliminate the time consuming process of restarting one or multiple clients. This KIP proposes the mechanisms for dynamic configuration of
the following client configs:

Producer Configs

acks

Consumer Configs

session.timeout.ms
heartbeat.interval.ms

Background

Config entities

Client entity names are more dynamic than broker and topic entity names. For example, client quotas can be tied to a user principle that is associated with
a session as well as a client-id which is a generic workload identifier. This is not as simple as a broker with a broker id, so dynamic client configs should
also have similar expressibility and extensibility to that which was introduced in for client quotas. The ClientConfigs APIs will follow the design KIP-546
pattern of the ClientQuotas APIs with a few differences.

Config values

Quota values are limited to double-precision 64-bit IEEE 754 format in the APIs introduced in KIP-546. However, client config values are strings in a .
properties file until the config values are parsed into their respective types based on the client's config definition. Dynamic client configs should also be
strings so that dynamic support can be added for any type of config in the future. This also allows dynamic client configs to be parsed and validated in the
same way as static client configs.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/r2341993f8df5615f514466f18ada1de504800be846a4b3ab738d49a9%40%3Cdev.kafka.apache.org%3E
https://github.com/apache/kafka/pull/9101
https://cwiki.apache.org/confluence/display/KAFKA/KIP-546%3A+Add+Client+Quota+APIs+to+the+Admin+Client

Hierarchy for resolving dynamic client configs

The hierarchy for resolving client quotas is rather complex. This is because quotas need to be set on every application in the system to achieve consistent
results. If a quota is set for client A but not client B, client B can end up hoarding resources because it is not limited. This would potentially cause client A
to do work at a lower rate than what the quota specifies. Having a robust hierarchy for quotas allows the user to set quotas on all applications rather easily
and then fine tune as needed. However, the hierarchy for client configs does not need to have the same amount of depth. There will just be a dynamic
default and a dynamic config so that dynamic client configuration is consistent with static client configuration (e.g. .properties file & client defaults). Since
users should not be able to change each others dynamic configs, the entities in the hierarchy will be scoped by at least user principle and optionally by
client-id.

Public Interfaces

Network Protocol

DescribeClientConfigs

{
 "apiKey": 50,
 "type": "request",
 "name": "DescribeClientConfigsRequest",
 "validVersions": "0",
 "flexibleVersions": "none",
 "fields": [
 { "name": "Components", "type": "[]ComponentData", "versions": "0+",
 "about": "Filter components to apply to config entities.", "fields": [
 { "name": "EntityType", "type": "string", "versions": "0+",
 "about": "The entity type that the filter component applies to." },
 { "name": "MatchType", "type": "int8", "versions": "0+",
 "about": "How to match the entity {0 = exact name, 1 = default name, 2 = any specified name}." },
 { "name": "Match", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The string to match against, or null if unused for the match type." }
]},
 { "name": "SupportedConfigs", "type": "[]string", "versions": "0+", "nullableVersions": "0+",
 "about": "The configuration keys to register, or null if not registering configuration keys." },
 { "name": "ResolveEntity", "type": "bool", "versions": "0+",
 "about": "True if an application is requesting dynamic configs for itself, false otherwise." },
 { "name": "Strict", "type": "bool", "versions": "0+",
 "about": "Whether the match is strict, i.e. should exclude entities with unspecified entity types." }
]
}

{
 "apiKey": 50,
 "type": "response",
 "name": "DescribeClientConfigsResponse",
 "validVersions": "0",
 "flexibleVersions": "none",
 "fields": [
 { "name": "ThrottleTimeMs", "type": "int32", "versions": "0+",
 "about": "The duration in milliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
 { "name": "ErrorCode", "type": "int16", "versions": "0+",
 "about": "The error code, or `0` if the config description succeeded." },
 { "name": "ErrorMessage", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The error message, or `null` if the config description succeeded." },
 { "name": "Entries", "type": "[]EntryData", "versions": "0+", "nullableVersions": "0+",
 "about": "A result entry.", "fields": [
 { "name": "Entity", "type": "[]EntityData", "versions": "0+",
 "about": "The config entity description.", "fields": [
 { "name": "EntityType", "type": "string", "versions": "0+",
 "about": "The entity type." },
 { "name": "EntityName", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The entity name, or null if the default."
]},
 { "name": "Values", "type": "[]ValueData", "versions": "0+",
 "about": "The config values for the entity.", "fields": [
 { "name": "Key", "type": "string", "versions": "0+",
 "about": "The configuration key." },
 { "name": "Value", "type": "string", "versions": "0+",
 "about": "The configuration value." }
]}
]}

]}
]
}

AlterClientConfigs

{
 "apiKey": 51,
 "type": "request",
 "name": "AlterClientConfigsRequest",
 "validVersions": "0",
 "flexibleVersions": "none",
 "fields": [
 { "name": "Entries", "type": "[]EntryData", "versions": "0+",
 "about": "The configuration entries to alter.", "fields": [
 { "name": "Entity", "type": "[]EntityData", "versions": "0+",
 "about": "The config entity to alter.", "fields": [
 { "name": "EntityType", "type": "string", "versions": "0+",
 "about": "The entity type." },
 { "name": "EntityName", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The name of the entity, or null if the default." }
]},
 { "name": "Ops", "type": "[]OpData", "versions": "0+",
 "about": "An individual configuration entry to alter.", "fields": [
 { "name": "Key", "type": "string", "versions": "0+",
 "about": "The configuration key." },
 { "name": "Value", "type": "string", "versions": "0+",
 "about": "The value to set, otherwise ignored if the value is to be removed." },
 { "name": "Remove", "type": "bool", "versions": "0+",
 "about": "Whether the configuration value should be removed, otherwise set." }
]}
]},
 { "name": "ValidateOnly", "type": "bool", "versions": "0+",
 "about": "Whether the alteration should be validated, but not performed." }
]
}

{
 "apiKey": 51,
 "type": "response",
 "name": "AlterClientConfigsResponse",
 "validVersions": "0",
 "flexibleVersions": "none",
 "fields": [
 { "name": "ThrottleTimeMs", "type": "int32", "versions": "0+",
 "about": "The duration in milliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
 { "name": "Entries", "type": "[]EntryData", "versions": "0+",
 "about": "The configuration entries to alter.", "fields": [
 { "name": "ErrorCode", "type": "int16", "versions": "0+",
 "about": "The error code, or `0` if the config alteration succeeded." },
 { "name": "ErrorMessage", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The error message, or `null` if the config alteration succeeded." },
 { "name": "Entity", "type": "[]EntityData", "versions": "0+",
 "about": "The config entity to alter.", "fields": [
 { "name": "EntityType", "type": "string", "versions": "0+",
 "about": "The entity type." },
 { "name": "EntityName", "type": "string", "versions": "0+", "nullableVersions": "0+",
 "about": "The name of the entity, or null if the default." }
]}
]}
]
}

Proposed Changes

Admin Client Changes

Admin client calls will be added to support {Describe, Alter}ClientConfigs.

Broker Changes

If a is made without a user component, an InvalidRequest error code will be returned to the client. Apart {Describe, Alter}ClientConfigsRequest
from this, when the EntityRequest field is not set to true, the mechanics of the <user, client-id> or user config entity descriptions are very similar to the
mechanics outlined in . This is because the bulk of the code in the brokers that handles fetching client quota entity configs from zookeeper can be KIP-546
reused for dynamic client configs.

Default dynamic client configs will be stored in the children of the znode /config/users, while client-id specific dynamic client configs will be stored in the
children of /config/users/<user>/clients.

The user config is updated when the client-id component is missing from an . The <user, client-id> config is updated AlterClientConfigsRequest
otherwise.

When the broker handles a that a client is making for it's own dynamic configs (e.g. ResolveEntity field set to true), DescribeClientConfigsRequest
the user config and the <user, client-id> config will be returned as one entity whose configs are resolved with the following order of precedence from most
precedent to least precedent:

/config/users/<user>/clients/<client-id>

/config/users/<user>

For example, any config key value pairs found in will override any config key value pairs found in /config/users/<user>/clients/<client-id> /c
. The final resolved map of configs will then be sent back to the client and will overwrite statically provided client configs.onfig/users/<user>

Client quotas are stored in these znodes as well. However, all configs that are not quota configs are filtered out when constructing a DescribeClientQuo
. Similar to this, all configs that are not dynamic client configs will be filtered out when constructing a .tasResponse DescribeClientConfigsResponse

The value for each key will also be validated against the allowed values for that key. For example, if the user tries to set acks=2, an InvalidRequest error
code will be sent back. The client will also have to validate dynamic configs against user-provided configs, so the broker is only doing partial validation
here. This is worth doing since partially validated configs may only be invalid for a subset of clients, whereas acks=2 would be invalid for all clients.

The same authorization that is necessary for , authorization, will be used when handling {Describe,Alter}ClientQuotas CLUSTER {Describe,
.Alter}ClientConfigsRequest

Producer Changes

The Java producer will have a that will periodically fetch dynamic configs from the producer’s IO thread asynchronously. The DynamicProducerConfig
interval on which dynamic configs are fetched will be the same amount of time as the interval for MetadataRequest, . It will use metadata.max.age.ms De

 as the RPC, validate the dynamic configs returned in against the user provided configs, scribeClientConfigsRequest DescribeConfigsResponse
and log any configurations that are accepted. The client will reconfigure its acks value by using a method in that gets the DynamicProducerConfig
current value of . The dynamic config will take precedence over user provided config unless the user provided configs require to be acks acks acks acks
a certain value, such as . In this case the dynamic update will be ignored.enable.idempotence=true

Consumer Changes

The in the broker receives a group member’s session timeout upon the and stores this with the rest of the GroupCoordinator JoinGroupRequest
group member's metadata. This means that to dynamically configure a consumer’s session timeout, the consumer must send a . JoinGroupRequest
Currently, this could trigger an expensive rebalance operation when members are stable. JoinGroup behavior will be changed so that the session timeout
can be updated using JoinGroup without triggering a rebalance in stable group members. The Java consumer's initial DescribeClientConfigsRequest
will still be done synchronously before the first JoinGroupRequest to avoid sending an unnecessary JoinGroupRequest.

The Java consumer will have a that will periodically fetch dynamic configs. The interval on which dynamic configs are fetched DynamicConsumerConfig
will be the same amount of time as the interval for . It will use as the RPC, MetadataRequest, metadata.max.age.ms DescribeConfigsRequest
validate the dynamic configs that are returned in against the user provided configs and log any configurations that are DescribeConfigsResponse
accepted. The client will either reconfigure itself by changing the session timeout and heartbeat interval in the or discard the GroupRebalanceConfig,
configs if the heartbeat interval is greater than or equal to the session timeout. The dynamic configs will take precedence over user provided client configs
as long as the heartbeat interval is strictly less than the session timeout.

Command Line Changes

kafka-configs.sh will be extended to support the client configurations listed at the beginning of this KIP. The same entity types that are used for client
quotas, users and , will be used for dynamic client configuration.clients

For example, the user can add the new configs supported with this KIP along with the quota configs that are supported for the admin client in to KIP-546
their default dynamic config. In this example the user mixes some dynamic client configs that this KIP introduces with the quota config producer_byte_r

:ate

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-546%3A+Add+Client+Quota+APIs+to+the+Admin+Client
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-546%3A+Add+Client+Quota+APIs+to+the+Admin+Client

1.

2.

bin/kafka-configs.sh --bootstrap-server localhost:9092 \
 --alter \
 --entity-type users \
 --entity-name alice \
 --add-config acks=-1,session.timeout.ms=11000,producer_byte_rate=50000
 Completed updating config for user alice.

The user can also add configs that will :specific to a client-id override the user's default dynamic configs

bin/kafka-configs.sh --bootstrap-server localhost:9092 \
 --alter \
 --entity-type users \
 --entity-name alice \
 --entity-type clients \
 --entity-name clientid-override \
 --add-config acks=0,heartbeat.interval.ms=2000,producer_byte_rate=60000
 Completed updating config for user alice.

The user can describe these configs the same way that client quotas are described with the users and entity types. To make this possible, clients kafka-
 will be sending a as well as the DescribeClientQuotasRequest. Dynamic client configs must at least be configs.sh DescribeClientConfigsRequest

scoped by a user:

bin/kafka-configs.sh --bootstrap-server localhost:9092 \
 --describe \
 --entity-type users \
 --entity-name alice
Quota configs for user-principal 'alice' are producer_byte_rate=50000.0
Dynamic configs for user-principal 'alice' are session.timeout.ms=11000, acks=-1

They may optionally be scoped by a client-id:

bin/kafka-configs.sh --bootstrap-server localhost:9092 \
 --describe \
 --entity-type users \
 --entity-name alice \
 --entity-type clients \
 --entity-name clientid-override
Quota configs for user-principal 'alice', client-id 'clientid-override' are producer_byte_rate=60000.0
Dynamic configs for user-principal 'alice', client-id 'clientid-override' are heartbeat.interval.ms=2000, acks=0

If a client-id is not specified when describing, all of the <user, client-id> entity configs will be returned:

bin/kafka-configs.sh --bootstrap-server localhost:9092 \
 --describe \
 --entity-type users \
 --entity-name alice \
 --entity-type clients
Quota configs for user-principal 'alice', client-id 'clientid-override' are producer_byte_rate=60000.0
Dynamic configs for user-principal 'alice', client-id 'clientid-override' are heartbeat.interval.ms=2000, acks=0
Dynamic configs for user-principal 'alice', client-id '""' are acks=-1

The config will be used in the case that the config does not contain a key that the default does contain, but only if the default dynamic client-id dynamic
client is requesting configs with the ResolveEntity flag set to true.

Any number of the configs that this KIP provides dynamic support for can be added or deleted with --add-config and --delete-config. They may
optionally be mixed with quotas in the same command.

Compatibility, Deprecation, and Migration Plan

If a client with this feature attempts to send a to an broker, the broker will send back an new DescribeClientConfigsRequest old InvalidR
 and the client will disable this feature.equest error code

2.
3.
4.

In the case that an client is talking to a broker, nothing will change since the old client will never send a DescribeClientConfigsRequest.old new
In the case that both the broker and client are up to date with this change, the client will take advantage of the feature.
The Java producers and consumers will register a list of configs that they support. This will be stored as the value of the dynamic config
‘supported.configs’ and can be returned to the user. If a new client registers with an entity the old value of this config will be overwritten.

Rejected Alternatives

Introducing new entity types for that producers and consumers can associate themselves with. This would make the tool kafka-configs.sh
more cumbersome to use .and it is most intuitive that client configurations be dynamically altered with the entity typesclients and users
Use the {Describe, IncrementalAlter}Configs APIs. Client config entities are more dynamic than entities with a singular resource name and type
which makes it hard to fit them into generic APIs that expect a distinct entity name and type.
Use the <user/client-id> hierarchy implemented for client quotas in and extended for the admin client in . Quotas are inherently KIP-55 KIP-546
hierarchical but client configs are not, so it seems reasonable to use a hierarchy of shallow depth for dynamic client configs.
Making client config compatibility information available to the user

The user should be able to see what dynamic configs are supported for each application. However, clients that are using the same <user, client-
id> entity may not necessarily support the same dynamic configs, storing a list of supported configs alongs side quotas and configs is a flawed
solution.

A better solution is to store config registrations in an internal topic. The Java producer and consumer clients can register the configs that they
support with a DescribeClientConfigsRequest. The broker can write a key-value pair to an internal topic upon receiving the request where the key
is the <user, client-id> entity and the value is ClientVersion along with the list of supported configs.

All versions of clients that registered with a <user, client-id> entity along with the supported configs for each version of client could be aggregated
when a DescribeClientConfigsRequest from an admin client is received. This information would then be returned to the admin client in the Descri

. For example, supported dynamic configs for user-principal 'alice', client-id 'clientid-override' are "{ beClientConfigsResponse
'ClientInformation(softwareName=apache-kafka-java, softwareVersion=x.y.a-SNAPSHOT)': 'acks', 'ClientInformation(softwareName=apache-
kafka-java, softwareVersion=x.y.b-SNAPSHOT)': 'acks, enable.idempotence' }".
Interesting hierarchies for config overrides could be constructed if the Java producer and consumer resolved the dynamic configs instead of the
broker. For example, from most precedent to least precedent:

/config/users/<user>/clients/<client-id>
.properties file configs
/config/users/<user>
Static default configs defined in and .ProducerConfig ConsumerConfig

Adding a config enable.dynamic.config to producers and consumers to enable the feature. This defaulted to true anyway so it was removed.
Making certain client configurations topic level configurations on the broker.

The semantic for the ProduceRequest API would be undefined since the producer would not receive a response with an offset for the
ProduceRequests with .acks=0
If this were implemented for there would also be quite a bit of overhead associated with extra round trips since the acks
RecordAccumulator sends batches that may contain records from multiple topics. If these topics have different configurations the acks
records would need to be sent in different batches based on the value.acks
For example, if a producer is consistently producing to 2 different topics and one is configured as while the other is . acks=0 acks=-1
This would require twice the amount of round trips to produce the same number of messages.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-55%3A+Secure+Quotas+for+Authenticated+Users
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-546%3A+Add+Client+Quota+APIs+to+the+Admin+Client

	KIP-649: Dynamic Client Configuration

