KIP-651 - Support PEM format for SSL certificates and
private key

Status
Motivation
© Goals:
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
O Use custom factory instead of built-in implementation for PEM support

Status

Current state: Accepted

Discussion thread: https://lists.apache.org/thread.html/r4e48ab3433c2a7d52¢c341dd309c1b3016b03fh82c7f2af99463f4166%40%3Cdev.kafka.apache.
org%3E

JIRA: .& Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Kafka currently supports only file-based key and trust stores for SSL. Both broker listeners and clients are configured using these settings:

ssl . keystore. type (JKS or PKCS12)

ssl . keystore. | ocation

ssl . keyst ore. password

ssl . key. password
ssl.truststore.type (JKS or PKCS12)
ssl.truststore.location
ssl.truststore. password

KIP-226 added support for dynamic reconfiguration of SSL key stores and trust stores. This KIP also enabled password configs to be stored encrypted in
ZooKeeper. KIP-297 and KIP-421 added support for externalizing configs, enabling sensitive configs to be stored in a secure third party store. The use of
file-based configs makes management of SSL stores and associated passwords difficult. For example, when broker key stores are updated prior to
expiration, key stores need to be first distributed to the broker machines. This cannot be done using the Kafka protocol. After distributing the files, Kafka
APl is used to update the stores in brokers. Brokers load the key/trust material from the file system and the associated password from broker configs,
which may be stored in ZooKeeper or an external vault for secret protection.

Privacy-Enhanced Mail (PEM) is a standard format for storing and distributing cryptographic keys, certificates and other data, defined in RFC-1421 , RFC-
1422, RFC-1423 and RFC-1424. Though no longer used as the standard for electronic mail, the container format defined by PEM is widely used for
storing cryptographic keys and certificates. PEM is supported by OpenSSL and is used by Netty as the standard for certificates and keys its APIs. The SSL
providers in Kafka have been made customizable using new security providers introduced in KIP-492 and custom SSL engine factory introduced in KIP-519
. Custom implementations can use third party libraries to load key and trust stores from different sources in different formats including PEM. But it will be
good to standardize configs that can be used with inline PEM for keys and certificates without relying on files.

Goals:

® Add support for PEM files in addition to existing JKS/PKCS12 for key and trust stores. This enables use of third party providers that use PEM.

® Add new configurations to provide private key and certificates directly in PEM format without relying on files. This avoids the need to maintain and
protect both Kafka config files and separate key store files.

® Support dynamic config updates of SSL private keys and certificates using Kafka protocol, without relying on a side channel for propagation of
files.

® Support secret protection for SSL private keys through externalization or encryption, without also requiring to protect files on the file system.

® Protect PEM data using encryption when configured as dynamic configs, stored in ZooKeeper.

® Improve detection of certificate or private key change. We currently check file modification times since it is diffcult to determine if certs in JKS
/PKCS12 have changed. We can do String comparison of PEM files instead.

® Avoid dependency on third party libraries in the default implementation.

https://lists.apache.org/thread.html/r4e48ab3433c2a7d52c341dd309c1b3016b03fb82c7f2af99463f4166%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r4e48ab3433c2a7d52c341dd309c1b3016b03fb82c7f2af99463f4166%40%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-226+-+Dynamic+Broker+Configuration
https://cwiki.apache.org/confluence/display/KAFKA/KIP-297%3A+Externalizing+Secrets+for+Connect+Configurations
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100829515
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1423
https://tools.ietf.org/html/rfc1424
https://cwiki.apache.org/confluence/display/KAFKA/KIP-492%3A+Add+java+security+providers+in+Kafka+Security+config
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=128650952

® Include limited support for encrypted private keys in PEM format using standard Java libraries. Third party libraries like bouncycast | e can be
used to add custom Ss| Engi neFact or y implementation to support wider range of options for loading encrypted keys.

Public Interfaces

The following new configuration options will be introduced by this KIP:
ssl.keystore.key

® Type: Passwor d
® Description: Private key in the format specified by ssl . keyst or e. t ype. Default SSL engine factory will support only PEM format with PKCS#8
keys. If the key is encrypted, key password must be specified using “ssl . key. password".

ssl.keystore.certificate.chain

® Type: Passwor d
® Description: Certificate chain in the format specified by ssl . keyst or e. t ype. Default SSL engine factory will support only PEM format with a list
of X.509 certificates.

ssl.truststore.certificates

® Type: Password
® Description: Trusted certificates in the format specified by ssl . t r ust st or e. t ype. Default SSL engine factory will support only PEM format
with X.509 certificates.

Even though public certificates don’t need to be hidden, Passwor d type will be used to be consistent with existing key and trust store configs. Private keys
may be provided encrypted for additional security. When unencrypted PEMs are used, dynamic config support or secret protection may be used to secure
private keys.

A new key store type "PEM will be added for key and trust stores. Both ssl . keyst ore. t ype and ssl . trust st or e. t ype may specify PEM in addition
to JKS and PKCS12.

Certificates and private keys may be configured using:

1. existing configs ssl . keystore. | ocation/ssl.truststore.|ocation toload PEM files

2. new configs ssl . keyst ore. key, ssl . keystore.certificate.chain, ssl.truststore.certificates tospecify PEM in server.
properties

3. new configs ssl . keyst ore. key, ssl . keystore.certificate.chain, ssl.truststore.certificates tostore PEM encrypted in
ZooKeeper using Admin API or kaf ka- confi gs. sh

4. new configs ssl . keyst ore. key, ssl . keystore.certificate.chain, ssl.truststore.certificates tostore PEMin a secure
external vault using config providers

Proposed Changes

Def aul t Ssl Engi neFact or y will be extended to load PEM data and create in-memory PKCS12 key stores and trust stores using standard Java APIs.
The rest of the implementation will be the same as the existing SSL implementation. To avoid dependency on external libraries, built-in Kafka provider will
only support limited forms of password-encryption for PEM files. Third-party libraries like bouncycast | e may be used to extend the SSL engine builder to
support a wider range of encryption and storage formats.

PEM files are multi-line configs and may be configured on multiple lines. The values will be trimmed to generate the Base64 encoded string. When
updating certificates using kaf ka- confi gs. sh, the "-- add- conf i g-fi | e option can be used to simplify updates on the command line.

For example:

ssl . keystore.certificate.chain=----- BEG N CERTI FI CATE- - - - - \

M | C4j CCAcqgAW BAg! I JHW2Lul+w8wDQYJKoZI hvc NAQEFBQAWI DEPVAOGALUE
AWMVGY2x pZW5 0 VREWDWYDVQQKDABI GNs aVWud DAe FwOy MDA4 NDMVOT U4 MT Za FwOy
VDAS VDI wOT U4 MT Za MOQx Dz ANBg NVBAMVBTNS 2\VW/ud DERMAS GATUECgw QSBj bd |
bnQnggEi MAOGCSqGSI b3DQEBAQUAA4| BDWAWYgEKA0I BAQOWTUf 499MROps z8LFr
EQZEvUH6e1gks6AJEW D7BY/ SmwRi j NPAaJhHaogYaVPr DEnff exZDVht c4eDkDl
r Ws+ZI kpNZupk! NCRAR4A9f 7JC Fz6r wd 4l Spa3m hkXS/ ZD0Opj CYB9t 2xBuTW/(q
ap40WjbQDs JHNH+9V/ nzkt X0ZOB6AgUUz FWLu3YDKS8XFD5TAAZKI u8rt xFzL1Uo
Hm WFU9EOHRGs 23xJn7j CEOBq3L2b51 EE/ ZHZVW ooi / j JI | D21bki | 731RWO0E3
Cl Esh7CQHW Xwy 0JmvP2dZr XbERpZcl H0ozb5JJwJi M BluxUi D3wKF/ r | cf RAcZ
AR4v AgMBAAG GCDAWWBQGAL Ud EQONVAUCCVK v Y2FsaG9z d DANBgk ghki GOWOBAQUF
AACCAQEAOgNAVK Ny Ul j dFeC/ O6f DWoGYqHJI Y3dki nhj f i DEQm+RLLI i 64xj | NyRJ
u4ZMHqEE4y @BnQGFxHkKI c A/ poDgnt SJr SFsf npHzZJ5kz5z QANDT9BYQ PWjoe2
Opl NB6Nj ZeUn2C0H+hAJI bel yeOPXM LwnDVUQIPS9xnl f gbr vl MOHG t G350eW 4
VLLOKaxi NYEXOxx9f T/ | Kj nqgi 7OPAMIVf p5y1t 4BCoe/ 4308Pd0I h2hdgVE6r Ln
mxEaTdl bQNp1j u70Zt | 3NNt 17+t ceqOVbf TRI 1xuf TB5dCPWeeg0ek C9j MVE42R+
Pi GYp7h8A3hRC5nBpYNKLSIp5ym Tg== \

----- END CERTI FI CATE- - - - -

e e e e e e — —

ssl . keystore. key=----- BEG N ENCRYPTED PRI VATE KEY--- - - \

Compatibility, Deprecation, and Migration Plan

We will continue to support file-based JKS and PKCS12 key and trust stores for SSL. The new configs will only take effect if explicitly set and we will throw
InvalidConfigurationException if both file and PEM values are configured at the same time.

Rejected Alternatives

Use custom factory instead of built-in implementation for PEM support

Since custom SSL engine factories can already load certs using external libraries, we can leave it to individual users to add support for PEM if needed. But
we believe this is not an uncommon case and having a configuration mechanism that integrates well with other features like secret protection may be
useful to many users. Hence a standard set of configs to support this feature seems useful.

	KIP-651 - Support PEM format for SSL certificates and private key

