
KIP-651 - Support PEM format for SSL certificates and
private key

Status
Motivation

Goals:
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Use custom factory instead of built-in implementation for PEM support

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/thread.html/r4e48ab3433c2a7d52c341dd309c1b3016b03fb82c7f2af99463f4166%40%3Cdev.kafka.apache.
org%3E

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka currently supports only file-based key and trust stores for SSL. Both broker listeners and clients are configured using these settings:

ssl.keystore.type (JKS or PKCS12)
ssl.keystore.location
ssl.keystore.password
ssl.key.password
ssl.truststore.type (JKS or PKCS12)
ssl.truststore.location
ssl.truststore.password

KIP-226 added support for dynamic reconfiguration of SSL key stores and trust stores. This KIP also enabled password configs to be stored encrypted in
ZooKeeper. and added support for externalizing configs, enabling sensitive configs to be stored in a secure third party store. The use of KIP-297 KIP-421
file-based configs makes management of SSL stores and associated passwords difficult. For example, when broker key stores are updated prior to
expiration, key stores need to be first distributed to the broker machines. This cannot be done using the Kafka protocol. After distributing the files, Kafka
API is used to update the stores in brokers. Brokers load the key/trust material from the file system and the associated password from broker configs,
which may be stored in ZooKeeper or an external vault for secret protection.

Privacy-Enhanced Mail (PEM) is a standard format for storing and distributing cryptographic keys, certificates and other data, defined in , RFC-1421 RFC-
, and . Though no longer used as the standard for electronic mail, the container format defined by PEM is widely used for 1422 RFC-1423 RFC-1424

storing cryptographic keys and certificates. PEM is supported by OpenSSL and is used by Netty as the standard for certificates and keys its APIs. The SSL
providers in Kafka have been made customizable using new security providers introduced in and custom SSL engine factory introduced in KIP-492 KIP-519
. Custom implementations can use third party libraries to load key and trust stores from different sources in different formats including PEM. But it will be
good to standardize configs that can be used with inline PEM for keys and certificates without relying on files.

Goals:

Add support for PEM files in addition to existing JKS/PKCS12 for key and trust stores. This enables use of third party providers that use PEM.
Add new configurations to provide private key and certificates directly in PEM format without relying on files. This avoids the need to maintain and
protect both Kafka config files and separate key store files.
Support dynamic config updates of SSL private keys and certificates using Kafka protocol, without relying on a side channel for propagation of
files.
Support secret protection for SSL private keys through externalization or encryption, without also requiring to protect files on the file system.
Protect PEM data using encryption when configured as dynamic configs, stored in ZooKeeper.
Improve detection of certificate or private key change. We currently check file modification times since it is diffcult to determine if certs in JKS
/PKCS12 have changed. We can do String comparison of PEM files instead.
Avoid dependency on third party libraries in the default implementation.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/r4e48ab3433c2a7d52c341dd309c1b3016b03fb82c7f2af99463f4166%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r4e48ab3433c2a7d52c341dd309c1b3016b03fb82c7f2af99463f4166%40%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-226+-+Dynamic+Broker+Configuration
https://cwiki.apache.org/confluence/display/KAFKA/KIP-297%3A+Externalizing+Secrets+for+Connect+Configurations
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100829515
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1423
https://tools.ietf.org/html/rfc1424
https://cwiki.apache.org/confluence/display/KAFKA/KIP-492%3A+Add+java+security+providers+in+Kafka+Security+config
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=128650952

1.
2.

3.

4.

Include limited support for encrypted private keys in PEM format using standard Java libraries. Third party libraries like can be bouncycastle
used to add custom implementation to support wider range of options for loading encrypted keys.SslEngineFactory

Public Interfaces
The following new configuration options will be introduced by this KIP:

ssl.keystore.key

Type: Password
Description: Private key in the format specified by . Default SSL engine factory will support only PEM format with PKCS#8 ssl.keystore.type
keys. If the key is encrypted, key password must be specified using ` `.ssl.key.password

ssl.keystore.certificate.chain

Type: Password
Description: Certificate chain in the format specified by . Default SSL engine factory will support only PEM format with a list ssl.keystore.type
of X.509 certificates.

ssl.truststore.certificates

Type: Password
Description: Trusted certificates in the format specified by . Default SSL engine factory will support only PEM format ssl.truststore.type
with X.509 certificates.

Even though public certificates don’t need to be hidden, type will be used to be consistent with existing key and trust store configs. Private keys Password
may be provided encrypted for additional security. When unencrypted PEMs are used, dynamic config support or secret protection may be used to secure
private keys.

A new key store type ` ` will be added for key and trust stores. Both and may specify PEM in addition PEM ssl.keystore.type ssl.truststore.type
to JKS and PKCS12.

Certificates and private keys may be configured using:

existing configs to load PEM filesssl.keystore.location/ssl.truststore.location
new configs , to specify PEM in server.ssl.keystore.key ssl.keystore.certificate.chain, ssl.truststore.certificates
properties
new configs , to store PEM encrypted in ssl.keystore.key ssl.keystore.certificate.chain, ssl.truststore.certificates
ZooKeeper using Admin API or kafka-configs.sh
new configs , to store PEM in a secure ssl.keystore.key ssl.keystore.certificate.chain, ssl.truststore.certificates
external vault using config providers

Proposed Changes
DefaultSslEngineFactory will be extended to load PEM data and create in-memory PKCS12 key stores and trust stores using standard Java APIs.
The rest of the implementation will be the same as the existing SSL implementation. To avoid dependency on external libraries, built-in Kafka provider will
only support limited forms of password-encryption for PEM files. Third-party libraries like may be used to extend the SSL engine builder to bouncycastle
support a wider range of encryption and storage formats.

PEM files are multi-line configs and may be configured on multiple lines. The values will be trimmed to generate the Base64 encoded string. When
updating certificates using , the `- ` option can be used to simplify updates on the command line.kafka-configs.sh -add-config-file

For example:

ssl.keystore.certificate.chain=-----BEGIN CERTIFICATE----- \
MIIC4jCCAcqgAwIBAgIIJHw42Lu1+w8wDQYJKoZIhvcNAQEFBQAwJDEPMA0GA1UE \
AwwGY2xpZW50MREwDwYDVQQKDAhBIGNsaWVudDAeFw0yMDA4MDMwOTU4MTZaFw0y \
MDA5MDIwOTU4MTZaMCQxDzANBgNVBAMMBmNsaWVudDERMA8GA1UECgwIQSBjbGll \
bnQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCwTUf499MROpsz8LFr \
EOZEvUH6e1qks6AJEWjD7BY/SmwRijNPAaJhHaogYaVPrDEmFfexZDVhtc4eDkDI \
rW6+ZlkpNZupkINCR4R49f7JCjFz6rwGl4lSpa3mIhkXS/ZD0pjCYB9t2xBuTWVq \
ap40WqbQDsJHNH+9V/nzktX0ZOB6AgUuzFwLu3YDKS8XFD5TAdZKIu8rtxFzL1Uo \
HmiWFU9EoHROs23xJn7jCEOBq3L2b5IEE/ZHZVw/ooi/jJIID21bkiI731RWOoE3 \
ClEsh7CQHWlXwyoJmMP2dZrXbERpZclH0ozb5JJwJiMtB1uxUiD3wKF/rlcfRAcZ \
AR4vAgMBAAGjGDAWMBQGA1UdEQQNMAuCCWxvY2FsaG9zdDANBgkqhkiG9w0BAQUF \
AAOCAQEAOqNAWknyUljdFeC/O5fDwoGYqHJY3dkinhjfiDEQm+RLLli64xjlNyRJ \
u4ZMHqEE4yQBnQGFxHkKIcA/poDgntSJrSFsfnpHzZJ5kz5zQdNDT9BYQIPWqoe2 \
0plNB6NjZeUn2OH+hAJIbclye0PXMrLwnDVUOJPS9xnlfgbrvIM0HCjtG95oeWv4 \
VLLOKaxiNYEX0xx9fT/lKjnqgi7OPAMTvfp5y1t4BCoe/43o8Pd0Ih2hdgVE6rLn \
mxEaTdlbQNp1ju70Ztl3NNt17+tceq0VbfTRI1xufTB5dCPWeeg0ekC9jMMs42R+ \
PiGYp7h8A3hRC5m8pYnKLSJp5ymITg== \
-----END CERTIFICATE-----

ssl.keystore.key=-----BEGIN ENCRYPTED PRIVATE KEY----- \
... \
-----END ENCRYPTED PRIVATE KEY-----

Compatibility, Deprecation, and Migration Plan
We will continue to support file-based JKS and PKCS12 key and trust stores for SSL. The new configs will only take effect if explicitly set and we will throw
InvalidConfigurationException if both file and PEM values are configured at the same time.

Rejected Alternatives

Use custom factory instead of built-in implementation for PEM support

Since custom SSL engine factories can already load certs using external libraries, we can leave it to individual users to add support for PEM if needed. But
we believe this is not an uncommon case and having a configuration mechanism that integrates well with other features like secret protection may be
useful to many users. Hence a standard set of configs to support this feature seems useful.

	KIP-651 - Support PEM format for SSL certificates and private key

