
KIP-655: Windowed Distinct Operation for Kafka Streams
API

Status
Motivation
Public Interfaces

Usage Examples
'Epoch-aligned deduplication' using tumbling windows
SessionWindows work for 'data-aligned deduplication'.

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Public Interfaces
Proposed Changes

Status
Current state: Voting

Discussion thread: here

Voting thread: here

JIRA:

Pull request: PR-9210

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Message deduplication is a common task.

One example: we might have multiple data sources each reporting its state periodically with a relatively high frequency, their current states should be
stored in a database. In case the actual change of the state occurs with a lower frequency than it is reported, in order to reduce the number of writes to the
database we might want to filter out duplicated messages using Kafka Streams.

'Distinct' operation is common in data processing, e. g.

SQL keyword,DISTINCT
In standard libraries for programming languages

.NET LINQ method,Distinct
Java Stream ,distinct()
Scala Seq ,distinct()

In data processing frameworks:
Apache Spark's ,distinct()
Apache Flink's ,distinct()
Apache Beam's ,Distinct()
Hazelcast Jet's , etc.distinct()

Hence it is natural to expect the similar functionality from Kafka Streams.

Although Kafka Streams Tutorials contains an of how can be emulated, but this example is complicated: it involves low-level coding example distinct
with local state store and a custom transformer. It might be much more convenient to have as a first-class DSL operation.distinct

Due to 'infinite' nature of KStream, operation should be windowed, similar to windowed joins and aggregations for KStreams.distinct

Public Interfaces
In accordance with , we introduce the following new elements:KStreams DSL Grammar

distinct() parameterless DSLOperation on

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/202008.mbox/%3Cc04c31a6-18fd-56c2-7a82-5ebd4840879c%40mail.ru%3E
http://mail-archives.apache.org/mod_mbox/kafka-dev/202107.mbox/%3C92d3d3b5-091f-82b4-353f-293b9e9051fb%40mail.ru%3E
https://github.com/apache/kafka/pull/9210
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct?view=net-5.0
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--
https://www.scala-lang.org/api/2.13.4/scala/collection/Seq.html#distinct:C
https://spark.apache.org/docs/latest/api/java/index.html
https://ci.apache.org/projects/flink/flink-docs-stable/api/java/index.html?org/apache/flink/api/java/DataSet.html
https://beam.apache.org/documentation/transforms/python/aggregation/distinct/
https://docs.hazelcast.org/docs/jet/3.0/manual/manual.html#distinct
https://kafka-tutorials.confluent.io/finding-distinct-events/kstreams.html
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+DSL+Grammar

TimeWindowedKStream<K,V> DSLObject which returns KStream<Windowed<K>,V>
SessionWindowedKStream<K,V> DSLObject which returns KStream<Windowed<K>,V>

The following methods are added to the corresponding interfaces:

KTable<Windowed<K>, V> distinct(final Named named);
KTable<Windowed<K>, V> distinct(final Materialized<K, V, WindowStore<Bytes, byte[]>> materialized);
KTable<Windowed<K>, V> distinct(final Named named,
 final Materialized<K, V, WindowStore<Bytes, byte[]>> materialized);

The operation returns only a first record that falls into a new window, and filters out all the other records that fall into an already existing window.distinct

The records are considered to be duplicates iff serialized forms of their keys are equal.

Usage Examples

Consider the following example (record times are in seconds):

//three bursts of variously ordered records
4, 5, 6
23, 22, 24
34, 33, 32
//'late arrivals'
7, 22, 35

'Epoch-aligned deduplication' using tumbling windows

.groupByKey().windowedBy(TimeWindows.of(Duration.ofSeconds(10))).distinct()

produces

(key@[00000/10000], 4)
(key@[20000/30000], 23)
(key@[30000/40000], 34)

-- that is, one record per epoch-aligned window.

Note: hopping and sliding windows do not make much sense for because they produce multiple intersected windows, so that one record can distinct()
be multiplied instead of deduplication.

SessionWindows work for 'data-aligned deduplication'.

.groupByKey().windowedBy(SessionWindows.with(Duration.ofSeconds(10))).distinct()

produces only

([key@4000/4000], 4)
([key@23000/23000], 23)

because all the records bigger than 7 are 'stuck together' in one session. Setting inactivity gap to 9 seconds will return three records:

([key@4000/4000], 4)
([key@23000/23000], 23)
([key@34000/34000], 34)

Compatibility, Deprecation, and Migration Plan
The proposed change is backwards compatible, no deprecation or migration needed.

Rejected Alternatives
The following was rejected during the discussion in favour of simpler approach:

1.

2.

3.
4.

1.

Public Interfaces

In accordance with , we introduce the following new elements:KStreams DSL Grammar

 distinct DSLOperation on a DSLObject which returns another DSLObject,KStream<K, V> KStream<K, V>
DistinctParameters<K, V, I> DSLParameter.

The type parameters are:

K — key type
V — value type
I — the type of the record's unique identifier

With the following can be provided:DistinctParameters<K, V, I>

KeyValueMapper<K, V, I> — extracts a unique identifier from a record by which we de-duplicate input records. If it returns idExtractor
null, the record will not be considered for de-duping and forwarded as-is. If not provided, defaults to , which means (key, value) -> key
deduplication based on key of the record. records from different partitions should have different IDs, otherwise same IDs Important assumption:
might be not co-partitioned.
TimeWindows timeWindows — tumbling or hopping time-based window specification. Required parameter. Only the first message with a given
id that falls into a window will be passed downstream.
Serde<I> idSerde — serde for unique identifier.
boolean isPersistent — whether the that stores the unique ids should be persistent or not. In many cases, non-persistent WindowStore
store will be preferrable because of better performance. Downstream consumers must be ready to accept occasional duplicates.

Proposed Changes

Add the following method to interface:KStream

<I> KStream<K, V> distinct(DistinctParameters<K, V, I> params);

Given the parameters, this method returns a new with only the first occurence of each record in any of the time windows, deduplicated by unique KStream
id. Any subsequent occurences in the time window are filtered out.

2. Add and implement the following DistinctParameters class:

class DistinctParameters<K, V, I> extends Named {
 /** Windowing parameters only. {@code (k,v)->k} id extractor is assumed, and a persistent store with key
serde is used*/
 public static <K, V> DistinctParameters<K, V, K> with(final TimeWindows timeWindows);

 /** Windowing parameters and a store persistency flag. {@code (k,v)->k} id extractor is assumed and a key
serde is used*/
 public static <K, V> DistinctParameters<K, V, K> with(final TimeWindows timeWindows, final boolean
isPersistent);

 /** Windowing parameters, ID extractor, and a serde for unique IDs. A persistent store will be used.*/
 public static <K, V, I> DistinctParameters<K, V, I> with(final TimeWindows timeWindows,
 final KeyValueMapper<K, V, I> idExtractor,
 final Serde<I> idSerde);
 /** Windowing parameters, ID extractor, a serde for unique IDs, and a flag showing whether the {@code
WindowStore} should be
 * persistent or not.*/
 public static <K, V, I> DistinctParameters<K, V, I> with(final TimeWindows timeWindows,
 final KeyValueMapper<K, V, I> idExtractor,
 final Serde<I> idSerde,
 final boolean isPersistent)
}

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+DSL+Grammar

	KIP-655: Windowed Distinct Operation for Kafka Streams API

