KIP-567: Kafka Cluster Audit

® Status
® Motivation
® Public Interfaces
© Auditor
© AuditEvent
o Specific Event Classes
© Generic Events
® Proposed Changes
© Default Implementation
® Compatibility, Deprecation, and Migration Plan
® Testing
® Rejected Alternatives
© Original KIP-567
© Client Side Auditing
© AbstractRequest and AbstractResponse in audit()
© Event Class per API

Status

Current state: Under Discussion
Discussion thread: new discussion and old discussion

JIRA: KAFKA-9413

Motivation

Auditing is a reporting functionality to notify other subsystems of the outcome of an authorization. It is used to check the activity of certain entities within a
cluster. It is highly demanded in most businesses to have the ability of obtaining audit information in case someone changes cluster configuration (like
creation/deletion/modify/description of any topic or ACLs) or even record client events in some environment. Audits need to be structured as the
implementors of this auditing would be JVM based applications and a more loose format (such as as emitting JSON as KIP-673) would in fact provide a
less safe API.

As a broader requirement reporting can happen to multiple services attached to Kafka each capturing different aspects and not just the outcome of the
authorization but the outcome of the whole action. In a simple use-case one might log topic create events with the information whether they were
authorized and successful or not. In a more complicated use-case one can report client and topic events into Apache Atlas which can create a dependency
graph of these events to visualize the interconnectedness of clients and topics.

In this KIP we try to provide a generic solution that can be applied to a broader interpretation of auditing which can be applied to a variety of use-cases,
such as the ones described above in a similar implementation fashion as the Authorizer.

A video recording is available below.

Public Interfaces

Auditor

Developers will be required to implement an interface which gives the extension point to implement auditing and reporting. In terms of form it can make
sense to provide a similar interface to the Aut hor i zer as they are closely related, they are the flip side of each other. The snippet defining the interface
can be found below. Similarly to the Aut hori zer we implement this in Java in the clients module so implementors won't have to depend on the core
module and ultimately on Scala.

To describe the interface broadly, it provides the request, its context, the authorized action and resources with the outcome of the authorization and errors
if there were any. It also required to be an asynchronous implementation with low latency as it taps into performance-sensitive areas, such as handling
produce requests. Resources can be created and destroyed with the confi gur e() and cl ose() methods. Moreover exactly one audit call will happen
when calling a certain API as authorizations will be collected throughout the API and passed to the auditor when all information is available, therefore
giving the widest possible context to the implementer.

https://lists.apache.org/thread.html/r169b9da59baa1612478e55f3130a6609563b4eed643eae1135c9f1c4%40%3Cdev.kafka.apache.org%3E
https://www.mail-archive.com/dev@kafka.apache.org/msg104533.html
https://issues.apache.org/jira/browse/KAFKA-9413
https://cwiki.apache.org/confluence/display/KAFKA/KIP-673%3A+Emit+JSONs+with+new+auto-generated+schema

* Licensed to the Apache Software Foundation (ASF) under one or nore

* contributor license agreenents. See the NOTICE file distributed with

* this work for additional information regarding copyright ownership.

* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in conpliance with

* the License. You may obtain a copy of the License at

* htt p: // ww. apache. org/ | i censes/ LI CENSE- 2. 0

* Unl ess required by applicable law or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASI S,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
* See the License for the specific | anguage governing pernissions and

* limtations under the License.

*/

package org. apache. kaf ka. server. audi tor;

i nport org. apache. kaf ka. coomon. Confi gur abl e;
i mport org. apache. kaf ka. common. annot ati on. I nterfaceStability;
i nport org. apache. kaf ka. server. aut hori zer. Aut hori zabl eRequest Cont ext ;

/**

* An auditor class that can be used to hook into the request after its conpletion and do auditing tasks, such
as

* logging to a special file or sending informati on about the request to external systens.

* Threadi ng nodel :

*

* The auditor inplenentati on nust be thread-safe.

* <l'i >The auditor inplementation is expected to be asynchronous with low latency as it is used in

per formance

* sensitive areas, such as in handling produce requests.

* Any threads or thread pools used for processing renote operations asynchronously can be started
during

* start(). These threads nust be shutdown during close().

* <ful>

*/

@nterfaceStability. Evol ving
public interface Auditor extends Configurable, AutoC oseable {

/**

* Called on request conpletion before returning the response to the client. It allows auditing rmultiple
resources

* in the request, such as nultiple topics being created.

* @aramevent is the request specific data passed down to the auditor. It nay be null if there are no
specific
* information is available for the given audited event type.
* @aram request Context contains netadata to the request.
*/
voi d audit (AuditEvent event, Authorizabl eRequest Context requestContext);
}
Auditinfo
/*

* Licensed to the Apache Software Foundati on (ASF) under one or nore

* contributor license agreenents. See the NOTICE file distributed with

* this work for additional information regarding copyright ownership.

* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in conpliance with

* the License. You may obtain a copy of the License at

* http://ww. apache. org/licenses/ LI CENSE-2. 0

* Unless required by applicable law or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASI S,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
* See the License for the specific |anguage governing perm ssions and

* limtations under the License.

*/

package org. apache. kaf ka. server. audi tor;

i nport org. apache. kaf ka. conmon. acl . Acl Oper ati on;

i mport org. apache. kaf ka. common. annot ation. I nterfaceStability;

i mport org.apache. kaf ka. conmon. r esour ce. Resour cePatt ern;

i mport org.apache. kaf ka. server. aut hori zer. Aut hori zati onResul t ;

/**
* This class encapsul ates the authorization information with the result of the operation. It is used in
speci fic ways
* in the {@ink AuditEvent} inplenentations. For instance a {@ink org. apache. kaf ka. server. audi tor. events.
Topi cEvent }
* will have an Auditlinfo for every topic as each topic is authorized but in case of an
* {@ink org.apache. kaf ka. server. audi tor. events. Acl Event} authorization only happens for the cluster resource,
* therefore there will be only one instance of this.
*/
@nterfaceStability. Evol ving
public class Auditinfo {

private final ResourcePattern resourcePattern;
private final Acl Operation operation;

private final AuthorizationResult allowed;
private final int error;

public Auditlnfo(Acl Operation operation, ResourcePattern resourcePattern) {
this.operation = operation;

this.resourcePattern = resourcePattern;
this.allowed = Authorizati onResul t. ALLONED,
this.error = 0;

}

public Auditlnfo(Acl Operation operation, ResourcePattern resourcePattern, AuthorizationResult allowed, int

error) {

this.operation = operation;
this.resourcePattern = resourcePattern;
this.allowed = all owed;
this.error = error;

}

public Acl Operation operation() {
return operation;

}

public ResourcePattern resource() {
return resourcePattern;

}

public AuthorizationResult allowed() {
return all owed;

}

public int errorCode() {
return error;

}

The KIP also introduces a new configuration called audi t or s which is a comma-separated list of Audi t or implementations. By default it is configured
with the Loggi ngAudi t or default implementation.

Property settings example

audi t or s=or g. apache. kaf ka. server . audi t or. Loggi ngAudi t or, or g. what ever . & her Audi t or

AuditEvent

This is a marker interface to serve as a base for all specific event class implementations.

AuditEvent

package org. apache. kaf ka. server. audi tor;
i nport org. apache. kaf ka. conmon. annot ati on. I nterfaceStability;

@nterfaceStability. Evol ving
public interface AuditEvent {

}

Specific Event Classes

There will be specific classes defined for each event much like the *Result classes for the AdminClient. Some examples are:

TopicEvent

* Licensed to the Apache Software Foundation (ASF) under one or nore

* contributor license agreenents. See the NOTICE file distributed with

* this work for additional information regarding copyright ownership.

* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in conpliance with

* the License. You may obtain a copy of the License at

* http://ww:. apache. org/|icenses/LI CENSE-2.0

* Unless required by applicable law or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASI S,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
* See the License for the specific | anguage governing perm ssions and

* limtations under the License.

*/

package org. apache. kaf ka. server. audi tor. events;

i nport org. apache. kaf ka. coomon. annot ati on. I nterfaceStability;
i mport org.apache. kaf ka. server. audi t or. Audi t Event ;
i nport org. apache. kaf ka. server. audi tor. Audi t | nf o;

import java.util.Collections;
inport java.util.Mp;
import java.util.Cbjects;

@nterfaceStability. Evol ving
public class Topi cEvent extends AuditEvent {

public static class AuditedTopic {
private final String topicNane;
private final int nunPartitions;
private final int replicationFactor;

private static final int NO PARTITI ON_NUMBER = -1;
private static final int NO REPLI CATI ON_ FACTOR = -1;

publ i c AuditedTopic(String topicName) {

this.topi cNane = topi cNang;

this.nunPartitions = NO_PARTI TI ON_NUMBER;

this.replicationFactor = NO_REPLI CATI ON_FACTOR;
}

public AuditedTopic(String topicNane, int nunPartitions, int replicationFactor) {
this.topi cNane = topi cNang;
this.nunPartitions = nunPartitions;
this.replicationFactor = replicationFactor;

}

public String name() {
return topi cNane;

}

public int nunPartitions() {
return nunPartitions;

}

public int replicationFactor() {
return replicationFactor;

}
@verride
publ i c bool ean equal s(bject o) {
if (this == 0) return true;
if (o ==null || getdass() != o.getC ass()) return false;
Audi t edTopi ¢ that = (AuditedTopic) o;
return nunPartitions == that.nunPartitions &&
replicationFactor == that.replicationFactor &%
t opi cNane. equal s(that .t opi cNane) ;
}
@verride

public int hashCode() {
return ojects. hash(topi cNane, nunPartitions, replicationFactor);
}
}

public enum Event Type {
CREATE, DELETE

}

private final Map<AuditedTopic, Auditlnfo> auditlnfo;
private final EventType event Type;

public static Topi cEvent topicCreateEvent (Map<AuditedTopic, Auditlnfo> auditlnfo) {
return new Topi cEvent (auditlnfo, EventType. CREATE);

}

public static Topi cEvent topicDel et eEvent (Map<AuditedTopic, Auditlnfo> auditlnfo) {
return new Topi cEvent (auditlnfo, EventType. DELETE);
}

publ i c Topi cEvent (Map<Audi t edTopi c, Auditlnfo> auditlnfo, EventType event Type) {
this.auditInfo = Collections. unnodifiabl eMap(auditlnfo);
this. event Type = event Type;

}

publ i c Map<AuditedTopic, Auditlnfo> auditinfo() {
return auditlnfo;

}

public Event Type event Type() {
return event Type,;

}

AclEvent

*/

Li censed to the Apache Software Foundation (ASF) under one or nore
contributor |icense agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in conpliance with
the License. You nay obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE- 2.0

Unl ess required by applicable law or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.

See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

package org. apache. kaf ka. server. audi tor. events;

i mport org. apache. kaf ka. common. acl . Acl Bi ndi ng;

i mport org.apache. kaf ka. conmon. acl . Acl Bi ndi ngFilter;

i nport org. apache. kaf ka. coomon. annot ati on. I nterfaceStability;
i mport org.apache. kaf ka. server. audi t or. Audi t Event ;

i nport org. apache. kaf ka. server. audi tor. Audi t | nf o;

i nport org. apache. kaf ka. server. aut hori zer. Acl Del et eResul t;

inport java.util.Collections;
import java.util.Mp;
import java.util. Set;

@nterfaceStability. Evol ving
public class Acl Event<T, R> extends AuditEvent {

public enum Event Type {
CREATE, DELETE, DESCRI BE;

}

private final Auditlnfo clusterAuditlnfo;
private final Set<T> auditedEntities;

private final EventType event Type;

private final Mp<R, |nteger> operationResults;

public static Acl Event <Acl Bi ndi ng, Acl Bi ndi ng> acl Creat eEvent (Set <Acl Bi ndi ng> audi tedEntities,
Auditlnfo clusterAuditlnfo) {
return new Acl Event <>(audi tedEntities, clusterAuditlnfo, Collections.enptyMap(), EventType. CREATE);

}

public static Acl Event <Acl Bi ndi ng, Acl Bi ndi ng> acl Creat eEvent (Set <Acl Bi ndi ng> audi tedEntities,

Audi t | nf

o clusterAuditlnfo,

Map<Acl Bi ndi ng, Integer> results) {

return new Acl Event<>(auditedEntities, clusterAuditinfo, results,

}

public static Acl Event <Acl Bi ndi ngFilter, Acl Del eteResult> acl Del et eEve

audi tedEntities,

return new Acl Event <>(auditedEntities, clusterAuditlnfo, Collectio

}

public static Acl Event <Acl Bi ndi ngFilter, Acl Del et eResult> acl Del et eEve

audi tedEntities,

results) {

return new Acl Event<>(auditedEntities, clusterAuditlnfo, results,

}

public static Acl Event <Acl Bi ndi ngFilter, AclBinding> acl Descri beEvent (

Event Type. CREATE) ;

nt (Set <Acl Bi ndi ngFi | ter>

Auditlnfo clusterAuditlnfo) {
ns. enpt yMap(), Event Type. DELETE);
nt (Set <Acl Bi ndi ngFil ter>

Audi t I nfo cl usterAuditlnfo,
Map<Acl Del et eResul t, | nteger>

Event Type. DELETE) ;

Set <Acl Bi ndi ngFi | ter> audi tedEntities,

Audi t I nfo cl usterAuditlnfo,
Map<Acl Bi ndi ng, Integer> results) {
return new Acl Event<>(auditedEntities, clusterAuditinfo, results, EventType. DESCRI BE);
}

public Acl Event (Set<T> auditedEntities, Auditlnfo clusterAuditlnfo, Map<R, |nteger> operationResults,
Event Type event Type) {
this.auditedEntities = Coll ections.unnodifiabl eSet (auditedEntities);
this.clusterAuditlnfo = clusterAuditlnfo;
thi s. event Type = event Type;
this.operationResults = Coll ections.unnodi fiabl eMap(operati onResults);

}

public Set<T> auditedEntities() {
return auditedEntities;

}

public Auditlinfo clusterAuditlinfo() {
return clusterAuditlnfo;

}

public Map<R, Integer> operationResults() {
return operationResults;

}

public Event Type event Type() {
return event Type;

}

Generic Events

Not all request types will need to be accompanied with the corresponding AuditEvent class as there are 50+ Kafka APIs where many are control requests
which may or may not be relevant from the user's perspective and it would be very labour intensive to code and maintain these. To overcome this the
auditor may pass nul | as the Audi t Event parameter in the audit method.

Proposed Changes

As part of the KIP we will define the interface above, implement the hooks in the various handle calls in Kaf kaApi s similarly to the Aut hori zer, but
doing the auditing before sending the response back as this is a common point where all the required parameters are ready. Any specific implementation
will live in the respective projects as we do it with the Aut hor i zer . This shouldn’t be an extra burden on these specific implementations as they usually
already implement the Aut hor i zer or already have some client side Kafka dependencies.

Default Implementation

We will have a default logger implementation that logs the following audited events under a logger named audi t Logger :

Topic events: describe, list, create, delete, partition number change, replication factor change
Config events: describe, alter config (incremental as well as legacy)

ACL events: describe, create, delete

replica log dirs: describe, alter

Reassignment: alter, list

Groups: describe, delete

Scram credentials: describe, alter

Client quotas: describe, alter

Delete records

Delete offsets

Compatibility, Deprecation, and Migration Plan

This is entirely new functionality so there are no compatibility, deprecation, or migration concerns.

Testing

The correctness of the Loggi ngAudi t or and data propagation between Kaf kaApi s and the Audi t or will be covered on the unit test level with mocking.

Rejected Alternatives

Original KIP-567

There was an earlier attempt to tackle this problem but it is now abandoned. It operated with somewhat different interfaces but overall the concept was
similar. | chose to take a slightly different angle and emphasize the similarities with the Aut hori zer as it makes sense to represent a similar requirement
with a similar interface, therefore until the community discussion prefers otherwise, | keep the original works but represent it in the rejected alternatives.

Client Side Auditing

Some auditing action can be quite heavy, such as auditing client actions, like detecting which client produces to which topics. It was considered to do some
of these on the client side but it has multiple obstacles:

® Auditing information still need to be collected in a central place, so it would require extra configuration on the client side.
® Also repetition of the same events should be avoided which means we have to implement cache on the client side. This makes the clients more
heavy which we would like to avoid. Also the same caching would apply to the brokers as well so implementation-wise we wouldn’t be ahead.

AbstractRequest and AbstractResponse in audit()

To provide a very generic auditing-like interface we can just pass the Abst r act Request and Abst r act Response objects to the audi t () method call.
The first problem with this is they are not public interfaces so first of all we would need to publish them as interface classes. Then the next problem that
they expose a bunch of generated classes which therefore would be interfaces as well, so just by exposing these two classes we need to expose a lot of
others as well, therefore growing the footprint too much. Secondly the created interface would be like a generic interceptor rather than an auditor. This is
not what this KIP aims for, although the "audit" functionality could be inserted as a post-action interceptor. Refactoring the Kaf kaApi s code to allow
inserting interceptors would be a too big scope for this KIP.

Event Class per API

In Kafka there are 50+ APIs. To create an event for each one, like TopicCreateEvent, TopicDeleteEvent etc. would explode the boilerplate code we would
need to implement the audit functionality. This isn't what we want and wouldn't be a good programming practice either. Instead of this we created event
classes mostly around the resource types that are being manipulated (topics, acls, configs, etc.). These are much less in number and could be easier to
use.

	KIP-567: Kafka Cluster Audit

