
KIP-677: migrating Topology methods to the Builder
pattern (WIP)

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

This page is meant as a template for writing a . To create a KIP choose Tools->Copy on this page and modify with your content and replace the KIP
heading with the next KIP number and a description of your issue. Replace anything in italics with your own description.

Status
Current state: [One of "Under Discussion", "Accepted", "Rejected"]

Discussion thread: [Change the link from the KIP proposal email archive to your own email thread]here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
In Topology, we have methods like this:

public synchronized <KIn, VIn> Topology addGlobalStore(
 final StoreBuilder<?> storeBuilder,
 final String sourceName,
 final TimestampExtractor timestampExtractor,
 final Deserializer<KIn> keyDeserializer,
 final Deserializer<VIn> valueDeserializer,
 final String topic,
 final String processorName,
 final ProcessorSupplier<KIn, VIn, Void, Void> stateUpdateSupplier)

It would probably be better UX to preset a builder interface like:

public synchronized <KIn, VIn> Topology addGlobalStore(
 AddGlobalStoreParameters.fromStoreBuilder(storeBuiler)
 .withSourceName(sourceName)
 .withSourceTopic(topic)
 .withTimestampExtractor(timestampExtractor)
 .withKeyDeserializer(keyDeserializer)
 .withValueDeserializer(valueDeserializer)
 .withProcessorName(processorName)
 .withStateUpdateSupplier(stateUpdateSupplier)
)

Public Interfaces
Briefly list any new interfaces that will be introduced as part of this proposal or any existing interfaces that will be removed or changed. The purpose of this
section is to concisely call out the public contract that will come along with this feature.

A public interface is any change to the following:

https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals
http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-10472?page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel&focusedCommentId=17212587#comment-17212587

Binary log format
The network protocol and api behavior
Any class in the public packages under clientsConfiguration, especially client configuration

org/apache/kafka/common/serialization
org/apache/kafka/common
org/apache/kafka/common/errors
org/apache/kafka/clients/producer
org/apache/kafka/clients/consumer (eventually, once stable)

Monitoring
Command line tools and arguments
Anything else that will likely break existing users in some way when they upgrade

Proposed Changes
Describe the new thing you want to do in appropriate detail. This may be fairly extensive and have large subsections of its own. Or it may be a few
sentences. Use judgement based on the scope of the change.

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?
If we are changing behavior how will we phase out the older behavior?
If we need special migration tools, describe them here.
When will we remove the existing behavior?

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

	KIP-677: migrating Topology methods to the Builder pattern (WIP)

