KIP-679: Producer will enable the strongest delivery
guarantee by default

Status
Motivation
Public Interfaces
Proposed Changes
© AclAuthorizer and SimpleAclAuthorizer
© "IDEMPOTENT_WRITE" Deprecation
© “request-required-acks” option in kafka-console-producer.sh will change default to -1
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Status

Current state: APPROVED

Discussion thread: https://lists.apache.org/thread.html/r56f658f1d1de2b09465d70be69a8bebfd4518663be5a88fba2e9e7c0%40%3Cdev.kafka.apache.
org%3E

Vote thread: https://lists.apache.org/thread.html/rle912a4e6b6def9fbaf8eOaeb7bbcfd612f3100df31782a307268a5¢%40%3Cdev.kafka.apache.org%3E

-&s Unable to render Jira issues macro, execution
JIRA: .& Unable to render Jira issues macro, execution
error.

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

The producer should enable the strongest message delivery guarantee by default.

1. Exactly Once Delivery. In KIP-98, the community introduces Exactly Once Delivery, which guarantees that every message will be persisted
exactly once without data loss or duplication. However, in order to give the community time for upgrading, by default, the producer will still use at-
least-once delivery and set "enable.idempotence=false".

2. N-1 failure toleration. If the brokers are flushing records to disks asynchronously, the strongest concurrent failure Kafka can tolerate is N-1. (i.e. N-
1 brokers shut down before the memory messages flush to disk). However, for some performance reasons, by default, the producer config will set
"ack=1", where the data loss can happen if the partition leader shutdown.

Having these guarantee won't impact the performance in a significant way, as stated here:

An analysis of the impact of max.in.flight.requests.per.connection and acks on Producer performance

Public Interfaces

1. Producer config defaults will change in release version 3.0

Producer config name From To

enable.idempotence false true

acks 1 all

2. Producer ACL required for enabling idempotence will change from IDEMPOTENT_WRITE" to "WRITE" in release version 2.8

A. In "ProduceRequest’ handler, we remove the IDEMPOTENT_WRITE" access check since it already has the "WRITE" access check on
topics.

B. In “InitProduceldRequest™ handler, if the producer will get authorized if it has "WRITE" access on ANY topic.

C. “kafka-acls™ will show deprecation warnings if users are trying to grant the IDEMPOTENT_WRITE" access.

https://lists.apache.org/thread.html/r56f658f1d1de2b09465d70be69a8bebfd4518663be5a88fba2e9e7c0%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r56f658f1d1de2b09465d70be69a8bebfd4518663be5a88fba2e9e7c0%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r1e912a4e6b6def9fbaf8e0aeb7bbcfd612f3100df31782a307268a5c%40%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki.apache.org/confluence/display/KAFKA/An+analysis+of+the+impact+of+max.in.flight.requests.per.connection+and+acks+on+Producer+performance

3. “org.apache.kafka.server.authorizer.Authorizer™ will have a new interface for checking if the caller is authorized to perform the given ACL
operation on at least one resource satisfying the filter. It will have a default implementation assuming “allow.everyone.if.no.acl.found=false".

clients/src/main/java/org/apache/kafka/server/authorizer/Authorizer.java

* Check if the caller is authorized to performthe given ACL operation on at
* resource of the given type.

* 1. Filter out all the resource pattern corresponding to the request Context,
* and Resour ceType
* 2. If wildcard deny exists, return deny directly

| east one

Acl Qper ati on,

* 3. For any literal allowed resource, if there's no domnant literal denied resource, and

* no domi nant prefixed denied resource, return allow

* 4. For any prefixed allowed resource, if there's no dom nant denied resource, return allow

* 5. For any other cases, return deny

* It is inportant to override this interface default in inplenentations because
* 1. The interface default iterates all AclBindings multiple times, wthout any indexing,

* which is a CPU intense work.

* 2. The interface default rebuild several sets of strings, which is a nenory intense work.

* @aram request Cont ext Request context including request resourceType, security protocol, and |istener
name

* @aram op The ACL operation to check

* @aram resourceType The resource type to check

* @eturn Return {@ink AuthorizationResul t #ALLONED} if the caller is authorized to perform
t he

* given ACL operation on at |east one resource of the given type.

* Return {@ink AuthorizationResul t #DENI ED} ot herwi se.

*/

default AuthorizationResult authorizeByResourceType(Authorizabl eRequest Cont ext
op, ResourceType resourceType) {
SecurityUtils. aut hori zeByResour ceTypeCheckArgs(op, resourceType);

ResourcePatternFilter resourceTypeFilter = new ResourcePatternFilter(
resourceType, null, PatternType. ANY);

Acl BindingFilter aclFilter = new Acl Bi ndi ngFil ter(
resourceTypeFilter, AccessControl EntryFilter.ANY);

EnunVap<Patter nType, Set<String>> denyPatterns =
new Enunivap<PatternType, Set<String>>(PatternType.class){{
put (PatternType. LI TERAL, new HashSet <>());
put (Patt er nType. PREFI XED, new HashSet <>());
IR
EnuniVap<PatternType, Set<String>> allowPatterns =
new EnunmVap<PatternType, Set<String>>(PatternType. class){{
put (PatternType. LI TERAL, new HashSet<>());
put (Patt er nType. PREFI XED, new HashSet <>());
I g

bool ean hasW | dCardAl | ow = fal se;
Kaf kaPri nci pal principal = new KafkaPri nci pal (
request Cont ext . pri nci pal (). get Princi pal Type(),
request Cont ext . princi pal ().get Narme());
String host Addr = request Context.clientAddress(). getHost Address();

for (AclBinding binding : acls(aclFilter)) {

request Cont ext ,

if (!binding.entry().host().equal s(hostAddr) && !binding.entry().host().equals("*"))

conti nue;

if (!'SecurityUils. parseKafkaPrincipal (binding.entry().principal()).equals(principal)

&& ! bi nding.entry().principal ().equal s("User:*"))
conti nue;

if (binding.entry().operation() != op
&& binding. entry().operation() != Acl Operation. ALL)
conti nue;

Acl Operation

http://allow.everyone.if.no

if (binding.entry().pernssionType() == Acl Permi ssionType. DENY) {
switch (binding.pattern().patternType()) {
case LI TERAL:
if (binding.pattern().nane().equal s(ResourcePattern. WLDCARD RESOURCE))
return AuthorizationResult. DENI ED;
denyPatterns. get (PatternType. LI TERAL) . add(bi ndi ng. pattern().nanme());
br eak;
case PREFI XED:
denyPatterns. get (PatternType. PREFI XED) . add(bi ndi ng. pattern().name());
br eak;
defaul t:
}
continue;

}

if (binding.entry().pernissionType() != Acl Perm ssionType. ALLOW
conti nue;

switch (binding.pattern().patternType()) {
case LI TERAL:
i f (binding.pattern().name().equal s(ResourcePattern. WLDCARD_RESOURCE)) {
hasW | dCar dAl | ow = true;

conti nue;
}
al | owPat t erns. get (PatternType. LI TERAL) . add(bi ndi ng. pattern(). name());
br eak;

case PREFI XED:
al | owPat t erns. get (Patt er nType. PREFI XED) . add(bi ndi ng. pattern().nane());
br eak;

defaul t:

}

if (haswW!dCardAllow) {
return AuthorizationResult. ALLOAED,
}

for (Map. Entry<PatternType, Set<String>> entry : allowPatterns.entrySet()) {
for (String allowstr : entry.getValue()) {

if (entry.getKey() == PatternType. Ll TERAL
&& denyPatterns. get(PatternType. LI TERAL). contains(allowStr))
conti nue;

StringBuilder sb = new StringBuilder();
bool ean hasDom nat edDeny = fal se;
for (char ch : allowstr.toCharArray()) {
sb. append(ch);
if (denyPatterns. get(PatternType. PREFI XED). contai ns(sbh.toString())) {
hasDom nat edDeny = true;
br eak;
}

}
if (!hasDonm nat edDeny)
return AuthorizationResult. ALLONED,

}

return Authorizati onResul t. DEN ED;

Proposed Changes

AclAuthorizer and SimpleAclAuthorizer
AclAuthorizer and AuthorizerWrapper will override the new interface “org.apache.kafka.server.authorizer.Authorizer#authorizeAny" to

1. improve the performance
2. implement the “allow.everyone.if.no.acl.found" logic

http://allow.everyone.if.no

"IDEMPOTENT_WRITE" Deprecation
Besides the public interface changes above, we will deprecate IDEMPOTENT_WRITE" in release version 3.0 because it's kind of trivial by practice.

We are relaxing the ACL restriction from IDEMPOTENT_WRITE" to "WRITE" earlier (release version 2.8) and changing the producer defaults
later (release version 3.0) in order to give the community users enough time to upgrade their broker first. So their later client-side upgrading, which enables
idempotence by default, won't get blocked by the IDEMPOTENT_WRITE" ACL required by the old version brokers.

‘IDEMPOTENT_WRITE" will be deprecated in 3.0 but won't be removed in a short term, in order to give the community enough time to upgrade their
“authorizer® implementation.

‘request-required-acks” option in kafka-console-producer.sh will change default to -1

In kafka-console-producer.sh, we have a option: ‘request-required-acks’ that can configure the acks setting in Producer. It was originally default to 1. But
after this KIP, we set the default enabl e. i denpot ence to true, so we have to also set the default acks config here to -1 for this change.

Compatibility, Deprecation, and Migration Plan

For changing the default of “acks’, there won't be any compatibility issues. But several compatibility issues may occur for changing the default of “enable.
idempotence’:

1. In the scenario below, people will need to either a) grant the producers the IDEMPOTENT_WRITE" access or b) change their producer config to
explicitly disable the idempotence (set “enable.idempotence = false”).
a. use producers with release version >= 3.0
b. use brokers with release version < 2.8
2. In the scenario below, people will need to either a) upgrade their topic format version >= V2 or b) change their producer config to explicitly disable
the idempotence (set “enable.idempotence = false’).
a. use producers with release version >= 3.0
b. have any topic using the message format < V2 while producers with release version >= 3.0 will produce to this topic
3. In the scenario below, people will need to implement the new "Authorizer#authorizeAny" interface
a. use their own authorizer implementation other than “AclAuthorizer’ and “SimpleAclAuthorizer®
b. the customized authorizer support the configuration “allow.everyone.if.no.acl.found"

Rejected Alternatives

There's an alternative way to implement a fallback semantics on “enable.idempotence’ to mitigate the compatibility issue. Specifically, by default, the
producer will set “enable.idempotence” as “suggested’, a new option, to let the producer and brokers decide if idempotence can be enabled or not.

However, since the fallback

1. adds more complexity to the client and broker side logic
2. may cause confusions and thus unexpected behavior

We decide to propose the simplest approach at the cost of the small compatibility issues.

http://allow.everyone.if.no

	KIP-679: Producer will enable the strongest delivery guarantee by default

