
KIP-682: Connect TimestampConverter support for multiple
fields and multiple input formats

Status
Motivation
Public Interfaces
Proposed Changes

Supporting Multiple Fields
Supporting Multiple String Input Formats

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA:
 Unable to render Jira issues macro, execution

error.

Proposed Pull Request: #11523

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The transform only allows to convert one field at a time for each usage of the transform (by use of the configuration TimestampConverter field
parameter). But in a real environment you will often have multiple timestamps on an event (such as Created On, Last Updated On, Approved On, etc), and
if you are in a position that one of them need to be converted using then probably more than one (if not all of them) need to be TimestampConverter
transformed. For large messages which may already be going through multiple other transforms, then the performance goes down quite a bit if you end up
chaining more than just a few transforms just to catch all of the different fields.TimestampConverter

At the same time, in the case of parsing strings to timestamps, in "real" environments it is not always possible to strictly control timestamp formats if
multiple different services are producing messages to the same topic. For example, maybe some have specified a time zone and some have not, some
give milliseconds, and some do not, etc. All of these variations could even be "valid" within the ISO 8601 standard but even the slightest difference in
format of any event that does not match the exact specified pattern will produce a failure with . So it would be better if it format TimestampConverter
was possible to give an input pattern that allowed for different variations to be parsed from string into a proper Date/Time type.

Public Interfaces
From the perspective of using this transform in Connect, the following things will be changed:

Change the configuration parameter to be called since it will now support multiple comma-separated field names (but can support field fields
backward compatibility for some time).
Add new configuration parameters to allow for a pattern format which supports multiple variations to parse a string, and format.input format.

 to specify the exact string format to output in the case of converting from a Date/Time to a string.output
The configuration parameter could possibly be removed at a later date (but remains for now for backwards compatibility), or could also format
be used to specify both and at the same time for more simple scenarios (assuming you just have a single format.input format.output
string input format).
As general housekeeping, the class should also be updated at the same time to include public and TimestampConverter ConfigName Config

 interfaces instead of various public string class attributes for the configuration properties, similar to what has been done in several of Default
the other SMTs (like for example).ReplaceField

Proposed Changes

Supporting Multiple Fields

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/rd2784e2d5991f15f8ba19a3446a91c101c49d7fba5fe357953cc0707%40%3Cdev.kafka.apache.org%3E
https://github.com/apache/kafka/pull/11523

For supporting multiple fields, we can change the property from a single string to a type and for clarity and consistency field ConfigDef.Type.LIST
the property should be renamed to instead. Then when performing the translation, the code can apply the transformation to all fields in the list fields
instead of just the one field specified in the old property.field

Supporting Multiple String Input Formats

For of a Date/Time field to a string, it must continue to be given in a single specific format, not in some kind of pattern. Because of this, we need to output
separate the format configuration parameter into two: one parameter for output strings with an exact format, and one parameter for input format of to
strings to be parsed into the that can support a pattern of different variations of the string-based date or timestamps.target.type

To support this, there will be two new parameters added: and .format.input format.output

The existing parameter can also remain in place to allow for configuration which will provide both the input and output formats at the same time, format
and work exactly as it did before this change. In this scenario, it would not support multiple different input formats (so again, the same as before). But it
should not allow to set a mix of both the old and the new format parameters.

In order to support multiple input patterns the suggestion is to make the string to target type parsing use some of the features of such as java.time Date
 instead of relying on the much older and more limited . was added in Java 8 which is TimeFormatter java.text.SimpleDateFormat java.time

the oldest version of Java supported by Kafka, so it should not add any new dependency if we wish to introduce its usage in Kafka.

The new property will require a regular expression-like string that is compatible with the JDK's format.input DateTimeFormatter.ofPattern()
method. For example patterns like this would be supported: "[yyyy-MM-dd[['T'][]HH:mm:ss[.SSSSSSSz][.SSS[XXX][X]]]]"

This example pattern would be able to support and successfully parse if there are multiple different formats in the same field, including:

2021-11-22
2021-11-22 11:19:45
2021-11-22T11:19:45
2021-11-22T11:19:45.000Z
and more...

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?

The transform configuration parameter will be renamed to but should be done so in a way that adoption is voluntary until a major version field fields
deprecation can occur (e.g. that still works and backward compatibility is maintained).field

The transform configuration parameter will continue to function as before (as a pattern for both input and output strings) format SimpleDateFormat
and if users wish to use the input format they will need to use new input and output specific parameters and DateTimeFormatter format.output form

 instead.at.input

If we are changing behavior how will we phase out the older behavior?

Existing configuration parameters and public class strings will be left as they are and continue to function as they do, but will be marked and described as
deprecated and can be fully removed if and when it is appropriate in a future major release.

If we need special migration tools, describe them here.

No migration tool should be necessary; if users wish to begin using the new features they will just need to update their connector configurations.

When will we remove the existing behavior?

The deprecated configuration parameter and the public configuration-related class strings will be removed after the next major Kafka release, field
based on the standard deprecation practice for the Kafka project.

Rejected Alternatives
One initial thought was to change the entire transform from using to instead use classes instead. However, after a bit of java.util.Date java.time
investigation I quickly found that since Kafka and Connect have a huge list of dependencies on dates and times being a , then it quickly java.util.Date
became apparent that the easiest thing to do would be to focus on the core problem: parsing strings into a in a smarter way with the help of Date
something like . and then continue returning a for use by the rest of Connect.DateTimeFormatter Date

	KIP-682: Connect TimestampConverter support for multiple fields and multiple input formats

