
KIP-683: Add recursive support to Connect Cast and
ReplaceField transforms, and support for casting complex
types to either a native or JSON string

Status
Motivation
Public Interfaces

Cast
ReplaceField

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA:

Pull Request: #9493

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Common patterns for transforming "real-world" messages that are anything but the most simple schemas will often include a combination of using the Cast
, , and transforms. However, none of these support any kind of transformation on Map or Array fields and does not ReplaceField Flatten Flatten
even support them at all (the transformation will just fail with an error).

Some of this makes sense – Connect is considered a single message transporter (my own words), and single message transformations are supposed to
be a 1-in and 1-out kind of a flow. Sometimes in reality, however, we will have payloads attached as children in the messages. I think KSQL is a good tool
to approach this problem with on a large scale, but if your Kafka environment is so large or so small that adding KSQL for just one or few exceptions might
not make sense.

I have solved some of these problem with customizations to and transforms and I hope that the community could maybe get some Cast ReplaceField
value from the enhancements which I have made.

So based on my experimentation and running different scenarios with customized transforms, the key things that help to give a bit more flexibility with
transforming more complicated messages are:

Ability to or perform operations (rename, exclude, or include) on fields which are nested as children one or more layers Cast ReplaceField
down.
Ability to the entire contents of a field which is a complex type (Array, Map, Struct) to a string so it can be handled downstream by Cast
something else (for example: if you are Sinking your messages to a database table, but your message is a header plus a payload of multiple
Structs in an Array, then convert this array to a string and then later parse it in the database). This is a much better outcome than just not being
able to handle the message at all (if you want to go to a JdbcSink, for example).
And on top of this, that sometimes it is much easier to work with a "complex field as a string" if the string is in JSON format instead of the native
Java object represented as a text string. So to give a setting which says how you want the complex fields to be represented as strings (JSON
format vs object).
Ability to merge a "must contain only exactly one of" different complex payloads into a common field name using (for example if ReplaceField
each of their structures are identical or mostly identical then it is a lot less work to merge them all together before you work with them
downstream).

After this, then it works quite well to chain transforms together in a pattern sort of like this (or other variations you can think of):

ReplaceField to rename multiple differently-named "must contain only exactly one of" payload fields into a single field name even if they are a
child of a field in the top level of the message schema.
Cast these complex field types (the "payload") as a string.
Flatten any other Struct nesting of primitive and complex types so in the end it is ready to insert into a database table.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/r201356d9cf63121a25c959d36c4a6fa27e577a00e28e8269c8ef2965%40%3Cdev.kafka.apache.org%3E
https://github.com/apache/kafka/pull/9493

Public Interfaces

Cast

New configuration parameters will be added to the Connect transform:Cast

 recursive optional boolean, default = false
complex.string.as.json optional boolean, default = false

The default value is false so any existing connectors should continue to work as they did before. If a user wants to begin using these options, then they
can update their connector config files or set a PUT request to the Connect Rest API for whichever connectors they desire to update.

ReplaceField

New configuration parameters will be added to the Connect transform:ReplaceField

 recursive optional boolean, default = false

The default value is false so any existing connectors should continue to work as they did before. If a user wants to begin using these options, then they
can update their connector config files or set a PUT request to the Connect Rest API for whichever connectors they desire to update.

Proposed Changes
In order to make this change, a fair amount of the structure and flow of both transforms must be altered. Namely, that instead of just looking for fields
based on the configuration or doing a loop through only the top level of the message, both the Schema update and the Value update will now need to call
recursive methods which build the schema and value from top to bottom based on the type of fields that are encountered.

Also, to add this ability to cast a complex string as a JSON-formatted string, then we will need to introduce some new dependencies for the transform
project. The initial thought is to use an instance of Connect's own and so that the usage and dependencies can be JsonConverter JsonDeserializer
self-contained within Kafka and the code required to handle this can be significantly minimized.

In my own experimentation (and what you can see in PR) it has included the following for both transforms:#9493

Adding Struct, Map, and Array as supported input type fields (but that they can only be traversed to find children fields underneath, or Cast in their
entirety to a string).
Removal of value assignment for Schema-less messages from the main method, into a new method applySchemaless buildUpdatedSchema

, which, when =true, recursively calls itself for any child Map or Array fields to traverse through the whole structure lessValue recursive
searching for fields to or rename/exclude/include (for).Cast ReplaceField
New method for handling child Arrays in Schema-less messages (same as above).buildUpdatedSchemalessArrayValue
New method which works in partnership with (which I renamed to buildUpdatedSchema getOrBuildSchema getOrBuildUpdatedSchema
to more fit the naming and ideas which exist in the rest of the flow) which, when =true, recursively builds the schema of any complex recursive
children as fields of different types are found. Each child schema which is built is also added to the after it is built so that it schemaUpdateCache
can be fetched again instead of rebuilt in case it appears somewhere else in the schema or when building the value.
New methods , , and to individually handle the buildUpdatedStructSchema buildUpdatedMapSchema buildUpdatedArraySchema
process to build child schemas of each of these types of complex fields.
Removal of the value assignment for Schema messages from the main method, into a new method applyWithSchema buildUpdatedSchemaV

, which, when =true, recursively calls itself for any child Struct, alue recursive Map, or Array fields to traverse through the whole structure
searching for fields to or rename/exclude/include (for).Cast ReplaceField
New methods and to buildUpdatedArrayValue buildUpdatedMapValue individually handle the process to build the new values of complex
child fields of these types.
New method in the transform to handle casting a complex type field to a JSON-formatted string in case castToJsonString Cast complex.
string.as.json=true.

Compatibility, Deprecation, and Migration Plan
The only impact should be that new functionality is added, which users must update their configuration in order to use it. Existing functionality should not
be impacted and no updated should be needed in order to keep using these transforms the same as before.

Rejected Alternatives
One possible alternative to the "recursive" idea is support for nested field selection via some kind of dotted or path-like notation in the configuration. This
could potentially also be added but at this time the current proposal is to only search out child field names which match what is given in the configuration at
no matter which level or how many times they appear within the schema or structure of the message.

Casting complex strings to JSON adds a bit of a variation to what the Cast transform is already doing, however the value which is added is quite large and
makes the data much easier to use downstream if it can be given in a more standardized format like this. It could be done in other ways (such as
traversing the message in a loop and use some of the Jackson classes to build new JSON objects etc) which removes the dependencies on the Kafka
Connect JSON project, however I feel that this would duplicate the effort which has already been done there and it is easier to implement and support if we
just use what is already available in Kafka.

https://github.com/apache/kafka/pull/9493

	KIP-683: Add recursive support to Connect Cast and ReplaceField transforms, and support for casting complex types to either a native or JSON string

