
1.

2.

3.
4.
5.

6.

KIP-684 - Support mutual TLS authentication on SASL_SSL
listeners

Status
Motivation

Goals
Public Interfaces

Configuration Options
Client Identity
Public API Changes

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Use a different configuration option for enabling mTLS with SASL_SSL
Support broker-wide and listener-prefixed `ssl.client.auth` for SASL_SSL
Support multiple KafkaPrincipals associated with single connection

Status
Current state: Accepted

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
SSL listeners in Kafka can configure TLS client authentication (also known as mutual TLS authentication) using the broker configuration option `ssl.

` with the following values:client.auth

` ` (default) : disables client authentication, assigns as none User:ANONYMOUS KafkaPrincipal.
`requested` : enables optional client authentication, uses distinguished name (DN) from certificate as by default if KafkaPrincipal
certificate provided, otherwise.User:ANONYMOUS
`required` : enables mandatory client authentication, uses DN from certificate as by default.KafkaPrincipal

Kafka currently disables TLS client authentication for SASL_SSL listeners even if ` is configured. This behaviour was introduced at a ssl.client.auth`
time when this configuration option could only be configured broker-wide. So in a broker with one SSL listener and one SASL_SSL listener, `ssl.client.

` would have forced both listeners to support TLS client authentication. In the common case where internal listeners used TLS client auth=required
authentication and SASL_SSL used SASL authentication without requiring key store distribution, this behaviour was not desirable.

KIP-103 introduced listener names and listener-prefixed configuration options, enabling security options to be configured at individual listener level. But we
continue to ignore ` ` configuration for SASL_SSL listeners. This KIP proposes to support TLS client authentication for SASL_SSL ssl.client.auth
listeners for additional protection in security-critical deployments. In organizations where mutual TLS authentication is mandatory on all connections, this
feature enables TLS authentication to be combined with SASL-based client identity.

Goals

Support mutual TLS authentication (mTLS) for SASL_SSL listeners to increase security of SASL_SSL and satisfy mandatory controls in security-
critical deployments.
Since distribution of TLS certificates with client identity as DN adds significant certificate management overhead, many organizations are unable
to use mTLS in external listeners with SSL as the security protocol. Support mTLS in SASL_SSL listeners to enable the use of shared client key
stores with SASL-based client identity.
Retain current defaults that disable mTLS for both SSL and SASL_SSL unless explicitly configured.
Retain current semantics for the broker-wide ` ` configuration for compatibility.ssl.client.auth
Enable mTLS for SASL_SSL if listener-level ` ` configuration option is set to ` ` or ` `, supporting both ssl.client.auth required requested
mandatory and optional TLS client authentication.
Retain current based on SASL authentication for SASL_SSL connections even if mTLS is enabled, avoiding any impact on KafkaPrincipal
authorization or quotas.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/r70f5fb23c95e51f9b5c6384c60f9c05c682346db27a6282891d078f1%40%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-103%3A+Separation+of+Internal+and+External+traffic

1.
2.

1.

Public Interfaces

Configuration Options

No new configuration options are being added, but we will add support for listener-prefixed ` ` for SASL_SSL listeners. Broker-wide `ssl.client.auth ss
` without listener prefix will apply only to SSL listeners as it is today.l.client.auth

` ` will continue to accept the following three values:ssl.client.auth

` ` (default): Client certificates will not be requested by brokers.none
` ` : Client certificates are optional may be provided by clients. If provided, clients will fail authentication if certificates are not valid.requested
` `: Client certificates are mandatory and must be provided. Clients will fail authentication if certificates are not valid.required

SSL listeners will continue to use this configuration with the following order of precedence ():no change

listener.name.<sslListenerName>.ssl.client.auth
ssl.client.auth

SASL listeners will only support this configuration with the listener prefix ():new behaviour

listener.name.<saslListenerName>.ssl.client.auth

If ` ` is configured without listener prefix and the broker has one or more SASL_SSL listeners, a warning will be logged to indicate that ssl.client.auth
the option is applied only to SSL listeners and that the behaviour may change in future releases. We can consider removing the inconsistency for this
configuration option and apply the value to all listeners in a future major release, either 4.0 or later.

Client Identity

SASL_SSL listeners will continue to use the client identity () established using SASL authentication regardless of whether mTLS is KafkaPrincipal
enabled. TLS client authentication is expected to be used for increased security of the connection, but not as a replacement for client identity. Authorization
and quotas will continue to use the established using SASL by default. Custom principal builders may use additional information from KafkaPrincipal
the SSL session for the associated with SASL_SSL connections. Custom authorizers and custom quota callbacks may use additional KafkaPrincipal
information provided by custom principal builders for authorization decisions and quotas.

Public API Changes

SaslAuthenticationContext will be extended to return for SASL_SSL listeners. This will be included regardless of whether mTLS is SSLSession
enabled. Custom principal builders may use this information to create principals that encapsulate SSL authentication state. For example, custom
authorizers may restrict some operations to users who authenticated successfully using TLS certificates as well as SASL.

SaslAuthenticationContext

public class SaslAuthenticationContext implements AuthenticationContext {

 private final Optional<SSLSession> sslSession;

 public SaslAuthenticationContext(SaslServer server, SecurityProtocol securityProtocol, InetAddress
clientAddress, String listenerName) {
 this(server, securityProtocol, clientAddress, listenerName, Optional.empty());
 }
 public SaslAuthenticationContext(SaslServer server,
 SecurityProtocol securityProtocol,
 InetAddress clientAddress,
 String listenerName,
 Optional<SSLSession> sslSession) {
 this.server = server;
 this.securityProtocol = securityProtocol;
 this.clientAddress = clientAddress;
 this.listenerName = listenerName;
 this.sslSession = sslSession;
 }

 public Optional<SSLSession> sslSession() {
 return sslSession;
 }

}

Proposed Changes
 will be updated to propagate the listener-prefixed value of ` ` to . At the moment ChannelBuilders ssl.client.auth SaslChannelBuilder SaslCha

 creates with ` `. That will be updated to use listener-prefixed configuration of `nnelBuilder SslFactory clientAuthConfigOverride=none ssl.
` with default value ` `. client.auth none

 will be updated to create with if the transport layer is SaslServerAuthenticator SaslAuthenticationContext SSLSession SslTransportLayer
.

No changes are expected on Java clients since we already allow configuration of SSL key stores with SASL_SSL that are used if broker requests
certificates.

Compatibility, Deprecation, and Migration Plan
By default, ` ` will be ` `, retaining current behaviour. Also, by default, broker-wide ` ` configuration will not be ssl.client.auth none ssl.client.auth
applied to SASL_SSL listeners, avoiding issues during upgrade in brokers with a combination of SSL and SASL_SSL listeners.

Brokers will start enforcing listener-prefixed ` ` for SASL_SSL listeners. This is a breaking change for brokers that have been wrongly ssl.client.auth
configured with ` ` to , expecting the configuration value to be listener.name.<saslListenerName>.ssl.client.auth required|requested
ignored. We will document this in upgrade notes to ensure that users can remove the configuration before upgrading.

If broker-wide ` ` is configured in a broker with both SSL and SASL_SSL listeners, a warning will be logged to indicate that the option is ssl.client.auth
applied only to the SSL listeners and that this behaviour may change in future releases. We can consider removing the inconsistency in the semantics of
this configuration and apply the value to all listeners in a future major release, either 4.0 or later.

Test Plan
SASL_SSL with mutual TLS authentication will be tested using unit and integration tests.

Rejected Alternatives

Use a different configuration option for enabling mTLS with SASL_SSL

We could introduce a new configuration ` ` instead of using ` ` to avoid any change to the existing option. But sasl.ssl.client.auth ssl.client.auth
overall, this seems more confusing since all other SSL options are shared between SSL and SASL_SSL.

Support broker-wide and listener-prefixed `ssl.client.auth` for SASL_SSL

All other SSL configs are supported at both levels for SSL and SASL_SSL. It may be confusing for just ` ` to require listener-prefix for ssl.client.auth
SASL_SSL. But if broker-wide ` ` is enforced for SASL_SSL, it would be a breaking change that requires existing brokers that currently ssl.client.auth
use this for one of the SSL listeners to change that to listener-prefixed config to avoid affecting SASL_SSL listeners. The current proposal limits impact on
existing deployments except in the erroneous/unintentional setting of ` `. We have other listener.name.<saslListenerName>.ssl.client.auth
configs like ` ` for SASL listeners that can only be set at listener/saslMechanism level, so this feels like a reasonable limitation for sasl.jaas.config
SASL listeners.

Support multiple KafkaPrincipals associated with single connection

The KIP proposes to use mTLS for additional protection of SASL_SSL listeners, with SASL identity as the default principal. This is different from
ZooKeeper which associates multiple principals for SASL and SSL with the same connection, granting access when either principal has access. Since
Kafka authorizers and quotas which rely on client identity work with a single identity, it would add more complexity and compatibility issues with multiple
identities. So we will continue to associate a single client identity with each connection. Custom principal builders may combine SSL and SASL
authentication information to determine this identity. Custom authorizers and custom quota callbacks can use the information from custom principals to
determine the access control model and quotas when both TLS client authentication and SASL authentication were applied.

	KIP-684 - Support mutual TLS authentication on SASL_SSL listeners

