
KIP-698: Add Explicit User Initialization of Broker-side
State to Kafka Streams

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/x/thread.html/rf65435729171c40a001a394e9f6170e7a2c24b6c9424a346954cd0e1@%3Cdev.kafka.apache.
org%3E

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka Streams uses repartition topics to repartition the data when a key-based operation, e.g., aggregation or join, follows a key-changing operation, e.g.,
map. Additionally, Kafka Streams uses changelog topics to replicate the data in its state store for fault-tolerance. If any required repartition topic or
changelog topic does not exist, it is created during a rebalance. More precisely these internal topics are created during the computation of the assignment.
Consequently, if one of the internal topics is deleted between rebalances, it will be silently recreated as an empty topic and data might be lost. Kafka
Streams users would either not notice the loss at all or notice it too late to limit the damage by stopping processing. Deletion of internal topics may happen
by mistake. This silent recreation of internal topics could be avoided by creating the internal topics only once during the first-ever rebalance of the
application (or after an application reset). However, determining the first-ever rebalance of an application is not always straightforward. For example, if all
Kafka Streams clients of a Kafka Streams application are stopped, an internal topic is deleted, and then the Kafka Streams application is restarted, the
deleted topic would be silently recreated as an empty topic because Kafka Streams does not have any information that it could leverage to recognize that
the first rebalance after restarting is not the first-ever rebalance of the application.

We propose to move the creation of the internal topics to an initialization method that users can call before they start their application for the first time. That
way, users have full control over when the internal topics are created and Kafka Streams can reliably notify the users about possible data loss by throwing
an exception when internal topics do unexpectedly not exist or are misconfigured. Additionally, we propose to add a configuration that allows to turn
automatic creation of internal topics on or off. The configuration is needed for backward compatibility but also to keep the first steps with Kafka Streams
simple for new users.

Public Interfaces
We propose to add two new exceptions and . MissingInternalTopicsException MisconfiguredInternalTopicException MissingInternal

 is thrown when a required internal topic does not exist and is thrown when the TopicsException MisconfiguredInternalTopicException
internal topic is not configured as expected. In general, misconfigurations are configurations that differ from default values specified by Kafka Streams or
from configurations specified in user code where configurations in user code are considered before Streams' default values. Those misconfigurations
typically occur if users change configurations directly on the brokers. For example, a changelog topic for a non-windowed state store is regarded as
misconfigured if its retention period is not set to unlimited. Another example for a misconfigured internal topic is a repartition topic with the wrong number of
partitions. In future, we might discover other misconfigurations that are critical to data loss. In such a case, Kafka Streams will also throw a Misconfigure

 without the need of a new KIP. The exception will contain a detailed explanation of what is wrong and how to fix it. The dInternalTopicException
intended recipient of these exceptions is the operator, not software.

These exceptions help to discriminate errors originating from missing or misconfigured internal topics from other errors in the uncaught exception handler.
For example, reacting on a missing source topic (i.e.,) might be different from reacting on a missing or misconfigured MissingSourceTopicException
internal topic, because the process for re-creating source topics might differ from the process for re-creating internal topics. Furthermore, source topics
might be owned by a different team than the internal topics, consequently different people need to be paged. Exceptions MissingInternalTopicsExce

 and will be thrown during explicit initialization and during a rebalance when the internal topics are ption MisconfiguredInternalTopicException
verified. Both exceptions are fatal.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/x/thread.html/rf65435729171c40a001a394e9f6170e7a2c24b6c9424a346954cd0e1@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/x/thread.html/rf65435729171c40a001a394e9f6170e7a2c24b6c9424a346954cd0e1@%3Cdev.kafka.apache.org%3E

Additionally, we propose to add an exception that is thrown if users attempt to intialize an already InternalTopicsAlreadySetupException
initialized application. Exception will be only thrown during explicit initialization. Such a behavior will ensure InternalTopicsAlreadySetupException
that users explicitly initialize the application only when:

they start the application for the first time,
they restart the application after an application reset,
they want to create missing internal topics of an incomplete setup (by setting the parameters of the initialization appropriately as described below).

If we do not throw exception , users might be tempted to initialize the application at each restart of the InternalTopicsAlreadySetupException
application. The intialization would not throw if all internal topics exist and it would only throw if some but not all internal topics were missing. If all internal
topics were accidentally deleted between two restarts, the initialization would silently recreate all internal topics which might again lead to data loss. Inter

 is fatal.nalTopicsAlreadySetupException

package org.apache.kafka.streams.errors;

public class MissingInternalTopicsException extends StreamsException {
 public List<String> topics();
}

public class MisconfiguredInternalTopicException extends StreamsException {
}

public class InternalTopicsAlreadySetupException extends StreamsException {
}

We propose to add an initialization method to the class.KafkaStreams

public class KafkaStreams {

 /**
 * Initializes broker-side state.
 *
 * @throw MissingSourceTopicException if a source topic is missing
 * @throw MissingInternalTopicsException if some but not all of the internal topics are missing
 * @throw MisconfiguredInternalTopicException if an internal topics is misconfigured
 * @throw InternalTopicsAlreadySetupException if all internal topics are already setup
 */
 public void init();

 /**
 * Initializes broker-side state.
 *
 * @throw MissingSourceTopicException if a source topic is missing
 * @throw MissingInternalTopicsException if some but not all of the internal topics are missing
 * @throw MisconfiguredInternalTopicException if an internal topics is misconfigured
 * @throw InternalTopicsAlreadySetupException if all internal topics are already setup
 * @throw TimeoutException if initialization exceeds the given timeout
 */
 public void init(final Duration timeout);

 /**
 * Initializes broker-side state.
 *
 * This methods takes parameters that specify which internal topics to setup if some
 * but not all of them are absent.
 *
 * @throw MissingSourceTopicException if a source topic is missing
 * @throw MissingInternalTopicsException if some but not all of the internal topics are missing
 * and the given initialization parameters do not specify to
setup them
 * @throw MisconfiguredInternalTopicException if an internal topics is misconfigured
 * @throw InternalTopicsAlreadySetupException if all internal topics are already setup
 */
 public void init(final InitParameters initParameters);

 /**
 * Initializes broker-side state.
 *
 * This methods takes parameters that specify which internal topics to setup if some
 * but not all of them are absent.
 *
 * @throw MissingSourceTopicException if a source topic is missing
 * @throw MissingInternalTopicsException if some but not all of the internal topics are missing
 * and the given initialization parameters do not specify to
setup them
 * @throw MisconfiguredInternalTopicException if an internal topics is misconfigured
 * @throw InternalTopicsAlreadySetupException if all internal topics are already setup
 * @throw TimeoutException if initialization exceeds the given timeout
 */
 public void init(final InitParameters initParameters, final Duration timeout);

 public class InitParameters {

 public static InitParameters initParameters(); // specifies to disable the setup
of internal topics if some topics are missing

 public InitParameters enableSetupInternalTopicsIfIncomplete(); // specifies to setup
repartition and changelog topics if some are missing
 public InitParameters disableSetupInternalTopicsIfIncomplete(); // specifies to throw if
some but not all repartition or changelog topics are missing
 public boolean setupInternalTopicsIfIncompleteEnabled(); // getter
 }
}

We propose to add a new configuration to Kafka Streams to determine whether the internal topics should be setup during a rebalance or by users calling K
.afkaStreams#init()

public class StreamsConfig {

 // possible values
 public static final String AUTOMATIC_SETUP = "automatic";
 public static final String MANUAL_SETUP = "manual";

 // configuration
 public static final String INTERNAL_TOPIC_SETUP = "internal.topics.setup"; // default is AUTOMATIC_SETUP
}

Proposed Changes
If configuration is set to the group leader will set up the internal topics during a rebalance. If internal INTERNAL_TOPIC_SETUP AUTOMATIC_SETUP,
topics were deleted between rebalances, the group leader will create the deleted internal topics during the rebalance. That corresponds to the current
behavior of Kafka Streams. Users can also call to set up the internal topics when is set to KafkaStreams#init() INTERNAL_TOPIC_SETUP AUTOMATI

, but the call is not necessary since the internal topics would be created anyways during the next rebalance. Additionally, misconfigurations will C_SETUP
be automatically rectified if possible and/or logged.

If configuration is set to , the group leader will not set up internal topics during a rebalance but users need to INTERNAL_TOPIC_SETUP MANUAL_SETUP
call to set up the internal topics. If the internal topics do not exist during a rebalance because has not KafkaStreams#init() KafkaStreams#init()
been called or one or more internal topics have been deleted, a is thrown in each Kafka Streams client. If during MissingInternalTopicsException
a rebalance the group leader realizes that an internal topic is misconfigured, a is thrown in each Kafka MisconfiguredInternalTopicException
Streams client.

If method :KafkaStreams#init()

does not find any internal topic for the Kafka Streams client on the brokers, it will setup all internal topics
finds all internal topics for the Kafka Streams client on the brokers, it will throw InternalTopicsAlreadySetupException
finds some of the internal topics it will

throw if is called without any parameters or the parameters specify to MissingInternalTopicsException KafkaStreams#init()
throw in case of missing internal topics
setup the missing internal topics if the parameters passed to specify soKafkaStreams#init()

finds a misconfigured internal topic it will throw MisconfiguredInternalTopicException
does not complete within the given timeout it will throw TimeoutException
does not find a source topic, it will throw MissingSourceTopicException

In addition to setup internal topics, will make all checks that are currently done during a rebalance including checks for source KafkaStreams#init()
topics.

Compatibility, Deprecation, and Migration Plan
Since we introduce configuration with default value that ensures the current Kafka Streams behavior, this INTERNAL_TOPIC_SETUP AUTOMATIC_SETUP
KIP should not affect backward-compatibility.

We do not need to deprecate any public interfaces since we propose to add a new method to the public API that does not replace any other method.

Migrating from the current behavior to set to can be done without any specific migration plan. Users need to INTERNAL_TOPIC_SETUP MANUAL_SETUP
set to and need to change their code to call accordingly.INTERNAL_TOPIC_SETUP MANUAL_SETUP KafkaStreams#init()

Rejected Alternatives
Persist a flag for the first-ever rebalance broker side: This approach was rejected because that would imply changes on the brokers which we
thought we can avoid and still get a good solution with the approach proposed in this KIP.
Use committed offsets for a repartition topic to verify if a repartition topic existed: This approach would not work since committed offsets
are removed when a topic is deleted.

	KIP-698: Add Explicit User Initialization of Broker-side State to Kafka Streams

