KIP-692: Make AdminClient value object constructors public

Status

Motivation

Public Interfaces / Proposed changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status

Current state: Under Discussion
Discussion thread: here
JIRA: https://issues.apache.org/jira/browse/KAFKA-10490

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

A common strategy in the testing of software components that interact with an external system is to construct a mock representing the behaviour of the
external system. There are several JVM based solutions that provide mocking functionality such as Mockito, JMockit, and EasyMock.

When devising test strategies for a system that interacts with a Kafka cluster, employing mocks that behave as the KafkaAdmin has a lot of benefits. It
makes tests more robust, simpler and faster compared to interacting with a real cluster. However, constructing the value objects that such mocks would
return is currently needlessly complicated because value object classes that the Kafka clients returns lack public constructors.

For example, consider a unit test for a piece of software that uses the Admi nC i ent . del et eTopi cs() method. Setting up a mock that conforms to the
contract is easy enough, but creating a Del et eTopi csResul t instance to return from invoking the method on the mock is not straight forward as
the constructor is declared with default access and can not be instantiated by code outside the or g. apache. kaf ka. cl i ent s. adm n package.

While there are ways to work around this limitation, for example by creating a mock of the value object to return, this adds complexity to any user that
would want to mock any of the kafka clients while testing their code. As a community, we should strive for making good testing easy.

Mocking AdminClient.deleteTopics() currently might look something like this:
Del et eTopi csResult del et eTopi csResult = nbck(Del et eTopi csResul t. cl ass);
when(del et eTopi csResul t. val ues()).thenReturn(singl etonMap(TOPI C_NAME, Kaf kaFut ure. conpl et edFut ure
(nul'l)));

Adm nC i ent nockAdm nClient = nmock(Adm ndient.class);
when(mockAdnmi nd i ent. del et eTopi cs(si ngl eton(TOPI C_NAME))).t henRet ur n(del et eTopi csResul t);

Whereas making constructors public would enable test writers to instead write:

Adm nC i ent nmockAdm nClient = nmock(Adm nCient.class);
when(nockAdmi nCl i ent. del et eTopi cs(si ngl eton(TOPI C_NAME))) .t henRet ur n(

new Del et eTopi csResul t (si ngl et onMap(TOPI C_NAME, Kaf kaFut ure. conpl etedFuture(null))))
)

Public Interfaces / Proposed changes

https://lists.apache.org/thread.html/r004fd599beae5ef3e1cdfd8a8ef0230d52783e86ea753795df798011%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-10490
https://site.mockito.org
https://jmockit.github.io
https://easymock.org

Make the constructors of the following top level classes and their inner classes public:

Cr eat eTopi cResul t

Del et eTopi csResul t

Li st Topi csResul t

Descri beTopi csResul t

Descri beCl ust er Resul t

Descri beAcl sResul t

Cr eat eAcl sResul t

Del et eAcl sResul t

Descri beConfi gsResul t

Al ter ConfigsResul t

Al terReplicalLogDirsResul t

Descri beLogDi r sResul t

Descri beRepl i caLogsDi rsResul t
CreatePartitionsResult

Del et eRecor dsResul t

Cr eat eDel egat i onTokenResul t
RenewDel egat i onTokenResul t

Expi r eDel egat i onTokenResul t
Descri beDel egati onTokenResul t
Li st Consuner G oupsResul t

Li st Consuner G oupOf f set sResul t
El ect Leader sResul t

Al terPartitionReassi gnnent Resul t
Li st PartitonReassi gnnent sResul t
RermoveMenber sFr omConsuner Resul t
Al t er Consuner G oupOf f set sResul t
Li st O f set sResul t

Descri bed i ent Quot asResul t

Al terdient Quot asResul t

Dscri beUser ScranCr edent i al sResul t
Al ter User Scr anCr edent i al sResul t
Descri beFeat ur esResul t

Updat eFeat ur esResul t

This KIP proposes no change in functionality, just a change in the access modifiers for the mentioned constructors to make available the already existing
functionality to users outside of the Apache Kafka codebase.

Compatibility, Deprecation, and Migration Plan

There should be no compatibility and migration neccessary for this change. Some Kafka test cases in for example Conf i gCommandTest could be
simplified to not use mock instances of value objects when it makes sense, but this is purely optional.

Rejected Alternatives

Besides leaving this as it is, one might envision some sort of factory setup where construction of value objects would be delegated to a separate class.
This would add indirection and complexity with the questionable gain of having a slightly smaller public footprint in the Apache Kafka admin client.

	KIP-692: Make AdminClient value object constructors public

