
KIP-691: Enhance Transactional Producer Exception
Handling

Status
Motivation
Proposed Changes

Unify Wrapped KafkaException
Callback Exception Improvement
Streams Side Change
Documentation change

Compatibility, Deprecation, and Migration Plan

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/list?dev@kafka.apache.org:2020-12:KIP-691

JIRA:

Related JIRA: ,

 , ,

 , ,

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka Producer supports transactional semantics since 0.11, including the following APIs:

 for transactional producer identity initializationInitTransaction
 to start a new transaction beginTransaction

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/list?dev@kafka.apache.org:2020-12:KIP-691

 to commit consumer offsets advanced within the current transactionsendOffsetsToTransaction
 commit the ongoing transactioncommitTransaction

 abort the ongoing transactionabortTransaction

Within a transaction session, the internal state tracks the last fatal/abortable error. When the Producer hits a fatal/abortable exception, it will transit to the
error state, and when next time someone uses a transactional API, it will throw the buffered exception. The caveat is that today we wrap many non-fatal
exceptions as KafkaException, which does not make a clear boundary on whether the thrown exception is fatal – should fail fast, or just abortable – should
catch and abort the ongoing transaction to resume. It affects the stability of upstream users as well such as Streams EOS. This KIP tries to address this
gap by revamping Producer APIs to make it more robust and let exception handling coherent and consistent.

As of 08/16/2022, we () made a pass inside the KafkaProducer on how we categorizes those exceptions, and also on how we wrapped guozhang Wang
those exceptions.

First of all, the exceptions can be thrown in the following ways:

1) Thrown from , which is thrown from TransactionManager#maybeFailWithError KafkaProducer#initTxn, #beginTxn, #commitTxn, #abortTxn,
. Except #send, all other functions would trigger maybeFailWithError right at the beginning of the function call. #sendOffsetsToTransaction, #send

However, KafkaProducer#send would only call this check AFTER the record is appended to the accumulator, and hence it's possible that the sender has
already sent this record out for idempotent producer (for transactional producer the record would not be sent until we successfully added the partition to the
txn coordinator), this exception may be thrown directly from the #send call or maybe thrown from the #send callback of the future (KAFKA-14138). See
below for more details. When they are thrown, they are mostly wrapped as KafkaExceptions

2) Thrown from , or the returned . Note that only produce request related exceptions may be thrown here, but KafkaProducer#send's callback future.get()
these exceptions may also be thrown in 1) above since some of these exceptions would also be cause TransactionManager to transit to error states.

Now here's a full summary of all possible exceptions below:

Exception Thrown Scenarios Thrown
places

Error Type Suggestion

IllegalStateEx
ception

Checked for various call paths checking impossible situations, indicating a bug. 1),
Wrapped
as
KafkaExcep
tion(e)

Fatal We should always throw
IllegalStateException directly
without wrapping

Authentication
Exception

Only for txnal requests whose are not authenticatedtxn.id 1), Wrapped
as KE(e)

Fatal None, all good

InvalidPidMap
pingException

Only for txnal request with the encoded txnID are not recognized or its corresponding PID is incorrect 1), Wrapped
as KE(e)

After KIP-360 (2.5
+), Abortable as
we bump epoch;

otherwise Fatal

None

UnknownProd
ucerIdExcepti
on

Similar to (i.e. the PID is not recognized on InvalidPidMappingException but only for produce request
the partition leader).

NOTE this is removed as part of KIP-360, and hence would only be returned by old brokers. We keep
this error code for now since we may re-use it in the future.

1), Wrapped
as KE(e)

After KIP-360 (2.5
+), Abortable as
we bump epoch;

otherwise Fatal

None

TransactionAb
ortedException

Only for produce request batches, when the txn is already aborting we would simply abort all unsent
batches with this error

2) N/A since it is not
an error case

None

ClusterAuthori
zationExcepti
on

TransactionalI
dAuthorization
Exception

UnsupportedV
ersionExcepti
on

UnsupportedF
orMessageFor
matException

Most of these errors are returned from produce responses (txnal response could also return Unsupporte
dVersionException).

When these errors return, we would immediately mark the txnManager to error state as well. These are
examples where the exceptions could be thrown in both txnManager#maybeFailWithError as well as
from send callback/future.

1),
Wrapped
as KE(e);
and

2)

Fatal See below

https://cwiki-test.apache.org/confluence/display/~guozhang
http://txn.id

InvalidRecord
Exception

InvalidRequire
dAcksExcepti
on

NotEnoughRe
plicasAfterApp
endException

NotEnoughRe
plicasException

RecordBatchT
ooLargeExcep
tion

InvalidTopicE
xception

CorruptRecor
dException

UnknownTopi
cOrPartitionEx
ception

NotLeaderOrF
ollowerExcepti
on

TimeoutExcep
tion

These are all errors returned from produce responses, that are non-fatal (timeout exception on expired
batch).

1),
Wrapped
as KE(e);
and 2)

Abortable See below

TopicAuthoriz
ationException

GroupAuthoriz
ationException

TopicAuthorizationException could be thrown via addPartition.

GroupAuthorizationException could be thrown via sendOffsetToTxn / findCoordinator.

Today they are all categorized as abortable but I think this should be fatal.

Abortable Should be fatal.

FencedInstan
ceIdException

CommitFailed
Exception

Thrown from TxnOffsetCommit (CommitFailedException are translated from UNKNOWN_MEMBER
and ILLEGAL_GENERATION).

Today it's treated as abortable. BUT I think it should really be fatal since it's basically indicating a
fenced situation.

1) Wrapped
as KE(e)

Abortable Should be fatal.

InvalidProduc
erEpochExce
ption

This error used to be returned from both txnal response and produce response, but as of KIP-588 (2.7
+), we would not let txn coordinator to return InvalidProducerEpochException anymore, but only from
partitions leaders on produce responses. Also since only older versioned coordinators still return
InvalidProducerEpochException, clients would treat them as fatal ProducerFencedException at the
client side.

HOWEVER, for TxnOffsetCommit (sent to the group coordinator) we did not do this conversion which is
a bug — we should always convert to ProducerFenced.

1), BUT not
wrapped

Fatal if from txnal
response
(translated to
ProducerFenced);

Abortable if from
produce response.

It's unclear why we wrap all
other exceptions but leave these
two un-wrapped; we should
have a consistent wrapping
mechanism.

Plus, we should fix the bug for
TxnOffsetCommit error handling.

ProducerFenc
edException

This error used to be returned from both txnal response and produce response, but as of KIP-588 it
should only be from txnal responses. It is a typical fatal error indicating that another producer with the
same PID and newer epoch is in use.

With KIP-447, producers from Kafka Streams should not be fenced by txn.id any more since we would
fence them based on the GroupCoordinator instead; the actual case this would be thrown is usually
when a txn is timed out (pending KIP-588 to be completed)

1), BUT not
wrapped

Fatal It's unclear why we wrap all
other exceptions but leave these
two un-wrapped; we should
have a consistent wrapping
mechanism.

OutOfOrderSe
quenceExcept
ion

From produce response only, when the sequence does not match expected value 1),
Wrapped
as KE(e)

Abortable (for
idempotent
producer we
would handle it
internally by
bumping epoch)

See below

InvalidTxnStat
eException

From txnal response, only, indicating the producer is issuing a request that it should not be.

NOTE that we are handling this exception inconsistently: in endTxn it's wrapped as KE(e), in
addPartitions it's wrapped as KE(KE(e))

1),
Wrapped
as either KE
(e) or KE
(KE(e))...

Fatal Should fix the inconsistent
wrapping.

KafkaException We definitely overloaded this one for various unrelated cases (which I think should be fixed):

1. when we failed to resolve those sequence-unresolved batches

1),
Wrapped
as KE(KE)

After KIP-360 (2.5
+), Abortable as
we bump epoch;

otherwise Fatal

Nested wrapping KafkaException
(KafkaException
(KafkaException..))) should be
avoided.

For this case I suggest we wrap
as KE
(OutOfSequenceException).

2. when we are closing the producer, and hence need to garbage collect all pending txnal requests, we
simply transit

1),
Wrapped
as KE(KE)

Fatal I don't think we should transit to
error state at all for this case,
and also shouldn't throw this
exception either.

3. When a txnal response does not contain the "response()" field. 1),
Wrapped
as KE(KE)

Fatal Again, this should be an
IllegalStateException since this
should never happen.

4. All unexpected errors from txnal response 1),
Wrapped
as KE(KE)

Fatal Again, should not wrap it twice
as KafkaException
(KafkaException()).

1.

2.
a.
b.
c.

3.

a.

b.

4.
a.
b.

5. When addPartition response returns with partition-level errors 1),
Wrapped
as KE(KE
(e))

Abortable Again should not wrap it twice as
as KafkaException
(KafkaException()).

RuntimeExce
ption

For any txnal requests, when request / response correlation id does not match 1),
Wrapped
as KE(e)

Fatal I think we should throw
CorrelationIdMismatchException
instead, which inherits from
IllegalStateException, hence
should not be wrapped either.

Besides the detailed suggestions on each of the above category lines, there are also a few meta-level proposals:

We should have a clear distinguishment between fatal and abortable errors. Today they are all wrapped as KafkaExceptions and hence users
cannot really tell the difference, so they have to just treat them all as fatal. One idea is to wrap them differently: we use KafkaException to wrap
fatal errors, while use AbortableException to wrap abortable errors.
We should have consistent mechanisms on wrapping errors. More specifically:

All exceptions should be wrapped at most once.
We should not have a nested wrapping like KE(KE(e)). Instead we should just have KE(e).
For IllegalState / Runtime errors which indicate a bug, we should not wrap but directly throw.

For errors that can be thrown from both scenario 1) and 2) above, we should have a clear guidance on how EOS users should handle them. More
specifically:

Users should be safely ignore the returned future since all errors that should be set inside the TransactionManager as well and hence
users should just capture the function itself.
The only error that's thrown only in 2) is TransactionAbortedException, and it could just be ignored since the user asked the producer to
close.

From EOS-related exceptions thrown directly from the call, we would just check if they are abortable or fatal:
For abortable exception, re-throw them as TxnCorruptedException which will be handled by aborting the txns.
For fatal exception, re-throw them as TaskMigratedException which will cause us to lose all tasks and re-join the group.

Proposed Changes
We are proposing a new transactional API usage template which makes EOS processing safer from handling a mix of fatal and non-fatal exceptions:

Sample.java

KafkaConsumer consumer = new KafkaConsumer<>(consumerConfig);
producer.initTransactions();
volatile boolean isRunning = true;

try {
 while (isRunning) {
 ConsumerRecords<String, String> records = consumer.poll(CONSUMER_POLL_TIMEOUT);
 final boolean shouldCommit;
 try {
 producer.beginTransaction();

 // Do some processing and build the records we want to produce.
 List<ProducerRecord> processed = process(consumed);

 for (ProducerRecord record : processed)
 producer.send(record, (metadata, exception) -> {
 // not required to capture the exception here.
 });
 producer.sendOffsetsToTransaction(consumedOffsets, consumer.groupMetadata());

 shouldCommit = true;
 } catch (Exception e) {
 // Catch any exception thrown from the data transmission phase.
 shouldCommit = false;
 }

 try {
 if (shouldCommit) {
 producer.commitTransaction();
 } else {
 resetToLastCommittedPositions(consumer);
 producer.abortTransaction();
 }
 } catch (CommitFailedException e) {
 // Transaction commit failed with abortable error, user could reset
 // the application state and resume with a new transaction. The root
 // cause was wrapped in the thrown exception.
 resetToLastCommittedPositions(consumer);
 producer.abortTransaction();
 }
 }
} catch (KafkaException e) { // Recommended closing producer/consumer for fatal exceptions
 producer.close();
 consumer.close();
 throw e;
}

In the above example, we separate the transactional processing into two phases: the data transmission phase, and the commit phase. In data transmission
phase, any exception thrown would be an indication of the ongoing transaction failure, so that we got a clear signal for the next stage whether to commit or
abort the ongoing transaction.

In the commit phase, we should decide whether to commit or abort transaction based on the previous stage result. In new Producer API,
commitTransaction() will no longer throw non-fatal exceptions in their raw formats. Instead, it would try to wrap all non-fatal exceptions as
`CommitFailedException`. This means any exception other than `CommitFailedException` caught during the commit phase will be definitely fatal, so user's
error handling experience could be simplified by just doing a controlled shutdown.

The only debatable case is timeout exception within commit/abort transaction. It could be treated either fatal or not, as strictly speaking producer would
have already done the retrying for so a timeout here may be suggesting a fatal state to a basic user's perspective. Blindly call abortTxn max.block.ms,
upon timeout could result in illegal state as well when the previous commit already writes `prepare_commit` on the broker side. Usually caller level could
have more sophisticated handling to do an application level retry if necessary, but we don't do any recommendations here. It is highly recommended to
increase the request timeout here instead of relying on unreliable retries.

We also put another try-catch block outside of the whole processing loop to get a chance catching all fatal exceptions and close producer and consumer
modules. It is a recommended way to handle fatal exceptions when the application still wants to proceed without any memory leak, but is optional to users.

Unify Wrapped KafkaException

1.
2.
3.

As discussed in the motivation section, in KafkaProducer we have a logic to wrap all thrown exceptions as KafkaException. To make the semantic clear
and for advanced users such as Kafka Streams to better understand the root cause, we shall no longer wrap any fatal exceptions, but instead only wrap
non-fatal ones as KafkaException. We also detect certain cases where we did a double-wrap of KafkaException internally, which will be addressed to
ensure only one layer wrapping is supported.

Callback Exception Improvement

As we have seen, there is a callback mechanism in the which carries the exception type. In EOS setup, it is not required to handle the producer#send
exception, but for non-EOS cases, the current exception type mechanism is complicated as it throws raw exceptions. Although in the callback function
comments we listed all the fatal and non-fatal exceptions, in users' perspective they still need to maintain an exhausting list for checking exception types
and take proper actions. The application code is fragile when facing ever-changing underlying producer logic with new exception types, and we have seen
the difficulty to classify populated exceptions in application level such as Streams.

On the other thread, there are around making producer API adopt more modern return types than a mere Future. This is a potential good proposals
opportunity to merge these two efforts.

To make the handling easier and consistent, we suggest to add a new exception type called ProduceFailedException which wraps the thrown exception
and contains an enum field indicating failure type. Right now there would be 3 types of failures:

message rejected: this error associates with this specific record being produced, such as InvalidTopic or RecordTooLarge
delivery failed: suggests a failure to produce last record, such as NotEnoughReplicas or Timeout
transaction error: an exception relating specifically to transactional semantic, such as ProducerFenced or InvalidTransactionState

With additional flagging, producer users would be in a much better position interpreting the callback and take proper actions with less effort to diagnose the
failures by themselves.

This new exception type would be thrown back to the user only in the new producer API depicted in .KIP-706

Streams Side Change

For EOS Kafka Streams case, we would adopt these simplified exception throwing logic by catching all exceptions in the data transmission phase to
decide for Streams commit. Furthermore, these changes leave to door open for us to analyze the non-fatal exceptions thrown as well by unwrapping
KafkaException's cause and reading failure type through callback.

More specifically:

For known exceptions such as ProducerFenced, the handling shall be simplified as we no longer need to wrap them as TaskMigratedException in
the send callback, since they should not crash the stream thread if thrown in raw format, once we adopt the new processing model in the send
phase.
When handling lost-all-partitions, which would trigger when 1) the rebalance listener's onPartitionsLost are called, indicating the consumer
member has been kicked out of the group, 2) a task-migration exception is thrown, we should not need to reset the producer by closing the
current one and re-creating a new producer any more. Instead, we should still be able to reuse the same producer after we've re-joined the
consumer group. Instead we just need to re-`initTxn` on the producer to make sure the previous dandling txns have been aborted before new
transactions are about to start.
We should distinguish exceptions thrown from the send() callback v.s. from the send() / commit() / etc call directly. With EOS, the only exception
that would ONLY be thrown in the callback would be TransactionAbortedException, which we can actually ignore; and hence we would only need
to just capture all exceptions thrown from the calls directly. That means we would handle exceptions differently between ALOS and EOS:

ALOS: try to capture exceptions from the callback, handle them just as today.
EOS: ignore exceptions from the callback, instead handle directly from the function calls.

Public Interfaces
As mentioned in the proposed changes section, we would be doing the following public API changes:

The commitTransaction() API will throw CommitFailedException to wrap non-fatal exceptions
All the non-fatal exceptions thrown from data transmission APIs will be wrapped as KafkaException, which we will be documented clearly. This
includes:

 beginTransaction
 sendOffsetsToTransaction

send

We would also let commitTransaction API only throw CommitFailedException with wrapped cause when hitting non-fatal exceptions, to simply the
exception try-catching.

We would add a new Producer error type called ProduceFailedException which tries to wrap send/produce exceptions with root cause and reasoning.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100829459
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100829459

Callback.java

/**
 * Exception indicating a produce failure for the given record, with root cause and reasoning embedded.
 */
public ProduceFailedException extends ApiException {

 private final FailureType type;

 public ProduceFailedException(Throwable cause, FailureType type) {
 super(cause);
 this.type = type;
 }

 public FailureType failureType() {
 return type;
 }

 enum FailureType {
 MESSSAGE_REJECTED, // the specific record being produced was rejected, such as InvalidTopic or
RecordTooLarge
 DELIVERY_FAILED, // a failure to produce last record, such as NotEnoughReplicas or Timeout
 TRANSACTION_FAILED // a transactional processing failure, such as ProducerFenced or
InvalidTransactionState
 }
}

The failure type in the embed exception should be helpful, for example, they could choose to ignore transactional errors since other txn APIs are already
taking care of them. We expect this error code to be implemented once KIP-706 is accepted, which would provide a more user-friendly send API with
CompletableFuture or similar.

Documentation change

We shall put the newly marked fatal exceptions on the public Producer API docs correspondingly, including

 beginTransaction
sendOffsetsToTransaction
commitTransaction
abortTransaction
send

Compatibility, Deprecation, and Migration Plan
This is a pure client side change which only affects the resiliency of new Producer client and Streams. For customized EOS use case, user needs to
change their exception catching logic to take actions against their exception handling around commitTransaction(), since it no longer throws non-fatal
exception, which means it does not indicate a success of commit when not throwing. However, all the thrown exceptions' base type would still be
KafkaException, so the effect should be minimal.

Rejected Alternatives
We thought about exhausting all the possible exception types on the Streams level for resiliency, but abandoned the approach pretty soon as it would
require a joint code change every time the underlying Producer client throws a new exception. The encapsulation should help reduce the amount of work
on the caller side for exception handling.

We also proposed to add a non-fatal exception wrapper type called to help users distinguish thrown exception TransactionStateCorruptedException
types. This solution has compatibility issue and is not necessarily making the developer and user's life easier.

We proposed to to add a return boolean in commitTransaction, so that even if the commit failed internally with non-fatal exception but wasn't throwing, we
still got a clear returned signal from commitTransaction to know whether the last commit was successful, as certain EOS users rely on external data
storage component and need to perform non-rollback commit operation as necessary. This approach was abandoned as it broke the compatibility since
old users would not assume a commitTxn not to be indicating a success when it passes without throwing non-fatal exceptions.

We discussed about throwing ProduceFailedException within the send callback, however there are compatibility concerns. The other approach is to make
failure reason as part of the callback function, which is less optimized than introducing a true async method like KIP-706 did.

	KIP-691: Enhance Transactional Producer Exception Handling

