
KIP-707: The future of KafkaFuture

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

KafkaFuture implementing CompletionStage
"Admin2"

Status
Current state: Adopted

Discussion thread: here

: Vote thread here

JIRA: KAFKA-6987

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The admin client makes extensive use of  in its   classes to enable clients the choice between synchronous and asynchronous KafkaFuture *Result
programming styles.   originally had to work on versions of Java which didn't support / , and so KafkaFuture CompletionStage CompletableFuture
was intended to provide a useful subset of that missing JDK functionality. That constraint no longer applies. It would be beneficial to provide a richer API, 
like that of , and also compatibility with 3rd party APIs which require an actual  or   instance.CompletionStage CompletionStage CompletableFuture

This KIP proposes to add a   method as a backward compatible solution to this problem.KafkaFuture.toCompletionStage()

Adding   is sufficient because   itself exposes , so anyone who needs an actual toCompletionStage() CompletionStage toCompletableFuture()
CompletableFuture (e.g. for interoperating with 3rd party APIs that require one) can get one. However,   exposes methods for future CompletableFuture
completion which should not be called by users (only the Admin client should be completing the returned futures), so calling these will be prevented. It is 
expected that users wanting to block on the completion of the   would use , rather than calling KafkaFuture kafkaFuture.get() kafkaFuture.

, so the need to access the   should be rare.toCompletionStage().toCompletableFuture().get() CompleteableFuture

Now also seems like a good opportunity to:

Remove the   annotation on   to reflect the reality that changing this class incompatibly would @InterfaceStability.Evolving KafkaFuture
cause of too much user code to break.
Deprecate the static class , which already had Javadoc noting that   was preferred.KafkaFuture.Function KafkaFuture.BaseFunction
Annotating ,   and   with  , like the corresponding interfaces KafkaFuture.Function .BaseFunction .BiFunction @FunctionalInterface
in .java.util

The methods of future admin client   classes would continue to use   for the sake of consistency.*Result KafkaFuture

Public Interfaces
The changes to   are summarized below:KafkaFuture

https://lists.apache.org/thread.html/r9e532fb0b7d9f39036e00a991e809785dcc0812588152afa852b6050%40%3Cdev.kafka.apache.org%3E
https://www.mail-archive.com/dev@kafka.apache.org/msg117519.html
https://issues.apache.org/jira/browse/KAFKA-6987


/**
 * A flexible future which supports call chaining and other asynchronous programming patterns. 
 *
 * <h3>Relation to {@code CompletableFuture}</h3>
 * <p>This class exists because support for a Future-like construct was once needed on Java versions predating
 * the addition of {@code CompletableFuture}. It is now possible to obtain a {@code CompletionStage} from a
 * {@code KafkaFuture} instance by calling {@link #toCompletionStage()}.
 * If converting {@link KafkaFuture#whenComplete(BiConsumer)} or {@link KafkaFuture#thenApply(BaseFunction)} to
 * {@link CompletableFuture#whenComplete(java.util.function.BiConsumer)} or
 * {@link CompletableFuture#thenApply(java.util.function.Function)} be aware that the returned
 * {@code KafkaFuture} will fail with an {@code ExecutionException}, where as a {@code CompletableFuture} fails
 * with a {@code CompletionException}.
 */
class KafkaFuture<Void> {

  // ... existing methods ...
  
  /**
   * Get a CompletionStage with the same completion properties as this KafkaFuture.
   * The returned instance will complete when this future completes and in the same way 
   * (with the same result or exception).
   *
   * <p>Calling toCompletableFuture() on the returned instance will yield a CompletableFuture,
   * but invocation of the completion methods (complete() and other methods in the complete*() 
   * and obtrude*() families) on that CompleteableFuture instance will result in 
   * UnsupportedOperationException being thrown. Unlike a minimal CompletableFuture
   * the get*() and other methods of that CompletableFuture not inherited from CompletionStage 
   * will work normally.
   *
   * <p>If you want to block on the completion of a KafkaFuture you should use
   * {@link #get()}, {@link #get} or {@link #getNow(Object)}, rather then calling
   * {@code .toCompletionStage().toCompletableFuture().get()} etc.

   */
  CompletionStage toCompletionStage();
  
  /**
   * A function which takes objects of type A and returns objects of type B.
   *
   * Prefer the functional interface {@link BaseFunction} over the class {@link Function}.  This class is here 
for
   * backwards compatibility reasons and might be deprecated/removed in a future release.
   * @deprecated Replaced by the functional interface {@link BaseFunction} over the class {@link Function}.
   */
  @Deprecated // adding this
  public static abstract class Function<A, B> implements BaseFunction<A, B> { }

}

Proposed Changes
Some work has already been done to thoroughly test the existing   API and reimplement it using a  internally.KafkaFuture CompletableFuture

To get the required completion-safety properties a new (internal)   class, a subclass of , will be KafkaCompletableFuture CompletableFuture
introduced. This KIP will allow access to the instance of that subclass wrapped by a , and that instance will be completed within KafkaFutureImpl Kafka

 via a different method than the /  that it inherits from .FutureImpl complete completeExceptionally CompletableFuture

KafkaFutureImpl would gain a new public constructor for wrapping a KafkaCompletableFuture, which will allow implementation of KafkaFuture#allO
 to be simplified.f()

Compatibility, Deprecation, and Migration Plan
The addition of   is backwards compatible.toCompetionStage

As noted,   will be formally deprecated. The lambda-compatible   has existed and been documented as preferred KafkaFuture.Function BaseFunction
for since Kafka 1.1. 
The actual removal of   can be done in some future major version of Kafka.KafkaFuture.Function



Rejected Alternatives

KafkaFuture implementing CompletionStage

KafkaFuture already has a   method. Making   implement   would thenApply(KafkaFuture.BaseFunction) KafkaFuture CompletionStage
require adding . That is not a source compatible because existing call sites using lambdas would thenApply(java.util.function.Function)
become ambiguous, since both parameter types are SAM types. While it's easily resolved with a type cast, it's still incompatible. There would also be 
differences in the exception handling for   and   in order to keep   compatible with its current behaviour.thenApply whenComplete KafkaFuture

Specifically, the   contract states:CompletionStage

In all other cases, if a stage's computation terminates abruptly
with an (unchecked) exception or error, then all dependent stages
requiring its completion complete exceptionally as well, with a
{@link CompletionException} holding the exception as its cause.

But   always fails using an . So the two   and KafkaFuture#thenApply(KafkaFuture.BaseFunction) ExecutionException thenApply whenComp
 methods would behave differently and resolving the compiler error by casting a lambda to   could break users' lete java.util.function.Function

exception handling.

"Admin2"

Other, more radical, possibilities include deprecating and replacing -returning methods on a case-by-case basis (eugh), or creating a new KafkaFuture Ad
 client which used   or   rather than  in its API, but was a thin wrapper of the existing .min2 CompletionStage CompletableFuture KafkaFuture Admin

These have a high cost to existing users of the admin client, who would have to change their code. They also come at a greater cost in terms of additional 
testing and documentation overhead for the project. And they don't offer any extra functionality beyond the solution proposed.

It is possible that this cost/benefit analysis might change in the future, for example if Project Loom's virtual threading model
proves to be successful then having an   client which supported only a synchronous programming model could make sense.Admin2


	KIP-707: The future of KafkaFuture

