
Datasketches Integration

Sketch functions
Naming convention
List declared sketch functions

Integration with materialized views
BI mode

Rewrite COUNT(DISTINCT(X))
Rewrite percentile_disc(p) withing group(order by x)
Rewrite cume_dist() over (order by id)
Rewrite NTILE
Rewrite RANK

Examples
Simple distinct counting examples using HLL

Apache DataSketches () is integrated into Hive via .https://datasketches.apache.org/ HIVE-22939
This enables various kind of sketch operations thru regular sql statement.

Sketch functions

Naming convention

All sketch functions are registered using the following naming convention:

ds_{sketchType}_{functionName}

For example we have a function called: which could be used to estimate the distinct values from an hll sketch.ds_hll_estimate

sketchType

For detailed info about the sketches themself please refer to the datasketches site!

frequency
hll
cpc
theta

frequent items
freq

histograms
kll

functionName

name description

sketch generates sketch data from input

estimate computes the estimate for frequency related sketches

union aggregate function to merge multiple sketches

union_f unions 2 sketches given in the arguments

n number of elements

cdf cumulative distribution

rank estimates the rank of the given element; returns a value in the range of 0~1

intersect aggregate to intersect multiple sketches

intersect_f intersect 2 sketches given in the arguments

stringify returns the the sketch in a more readable form

List declared sketch functions

Given that we have ~60 functions registered I would recommend to also consider listing/getting info about a single udf.

https://datasketches.apache.org/
https://issues.apache.org/jira/browse/HIVE-22939

You could list all functions prefixed by ds_ using:

show functions like 'ds_%';

And you can access the description of a function like:

desc function ds_freq_sketch;

Integration with materialized views
Sketch aggregation(s) are exposed to Calcite by some extensions - which could enable both the usage of an MV in a smaller dimension query; or could
help in incremental updates.

BI mode
Usage of sketches can give a performance boost in case we could afford to loose some accuracy. Which could come very handy in case of charts or live
dashboards.
The BI mode is about making rewrites automatically to sketch functions if possible.

The BI mode can be enabled using:

set hive.optimize.bi.enabled=true;

Rewrite COUNT(DISTINCT(X))

This feature can be toggled using the conf keyhive.optimize.bi.rewrite.countdistinct.enabled

The used distinct sketch family can be configured using: (currently only hll is available).hive.optimize.bi.rewrite.countdistinct.sketch

This feature could rewrite

select category, count(distinct id) from sketch_input group by category

to use a distinct count sketch to answer the query by rewriting it to

select category, round(ds_hll_estimate(ds_hll_sketch(id))) from sketch_input

Rewrite percentile_disc(p) withing group(order by x)

This feature can be toggled using the conf key hive.optimize.bi.rewrite.percentile_disc.enabled

The used histogram sketch family can be configured using: (currently only kll is available).hive.optimize.bi.rewrite.percentile_disc.sketch

This feature could rewrite

select percentile_disc(0.3) within group(order by id) from sketch_input

to use a histogram sketch to answer the query by rewriting to

select ds_kll_quantile(ds_kll_sketch(id), 0.3) from sketch_input

Rewrite cume_dist() over (order by id)

This feature can be toggled using the conf key .rewrite.cume_dist.enabledhive.optimize.bi

The used histogram sketch family can be configured using: .rewrite.cume_dist.sketch (currently only kll is available).hive.optimize.bi

select id,cume_dist() over (order by id) from sketch_input

http://hive.optimize.bi
http://hive.optimize.bi

to use a histogram sketch to answer the query by rewriting to

SELECT id, CAST(DS_KLL_RANK(t2.sketch, idVal) AS DOUBLE)
FROM (SELECT id, CAST(COALESCE(CAST(id AS FLOAT), 340282346638528860000000000000000000000) AS FLOAT) AS idVal
FROM sketch_input) AS t,
(SELECT DS_KLL_SKETCH(CAST(`id` AS FLOAT)) AS `sketch` FROM sketch_input) AS t2

Rewrite NTILE

This feature can be toggled using the conf key.rewrite.ntile.enabledhive.optimize.bi

The used histogram sketch family can be configured using: .rewrite.ntile.sketch (currently only kll is available).hive.optimize.bi

This feature can rewrite

select id,
 ntile(4) over (order by id
from sketch_input
order by id

To use a histogram sketch to calculate the NTILE's value:

select id,
 case when ceil(ds_kll_cdf(ds, CAST(id AS FLOAT))[0]*4) < 1 then 1 else ceil(ds_kll_cdf(ds, CAST(id AS
FLOAT))[0]*4) end
from sketch_input
join (select ds_kll_sketch(cast(id as float)) as ds from sketch_input) q
order by id

select id,
 rank() over (order by id),
 case when ds_kll_n(ds) < (ceil(ds_kll_rank(ds, CAST(id AS FLOAT))*ds_kll_n(ds))+1) then
ds_kll_n(ds) else (ceil(ds_kll_rank(ds, CAST(id AS FLOAT))*ds_kll_n(ds))+1) end

Rewrite RANK

This feature can be toggled using the conf keyhive.optimize.bi.rewrite.rank.enabled

The used histogram sketch family can be configured using: (currently only kll is available).hive.optimize.bi.rewrite.rank.sketch

select id,
 rank() over (order by id)
from sketch_input
order by id

is rewritten to

select id,
 case when ds_kll_n(ds) < (ceil(ds_kll_rank(ds, CAST(id AS FLOAT))*ds_kll_n(ds))+1) then ds_kll_n(ds)
else (ceil(ds_kll_rank(ds, CAST(id AS FLOAT))*ds_kll_n(ds))+1) end
from sketch_input
join (select ds_kll_sketch(cast(id as float)) as ds from sketch_input) q
order by id

Examples

http://hive.optimize.bi
http://hive.optimize.bi

Simple distinct counting examples using HLL

Prepare sample table

create table sketch_input (id int, category char(1))
STORED AS ORC
TBLPROPERTIES ('transactional'='true');

insert into table sketch_input values
 (1,'a'),(1, 'a'), (2, 'a'), (3, 'a'), (4, 'a'), (5, 'a'), (6, 'a'), (7, 'a'), (8, 'a'), (9, 'a'), (10,
'a'),
 (6,'b'),(6, 'b'), (7, 'b'), (8, 'b'), (9, 'b'), (10, 'b'), (11, 'b'), (12, 'b'), (13, 'b'), (14, 'b'),
(15, 'b')
;

Use HLL to compute distinct values using an intermediate table

-- build sketches per category
create temporary table sketch_intermediate (category char(1), sketch binary);
insert into sketch_intermediate select category, ds_hll_sketch(id) from sketch_input group by category;

-- get unique count estimates per category
select category, ds_hll_estimate(sketch) from sketch_intermediate;

-- union sketches across categories and get overall unique count estimate
select ds_hll_estimate(ds_hll_union(sketch)) from sketch_intermediate;

Use HLL to compute distinct values without intermediate table

select category, ds_hll_estimate(ds_hll_sketch(id)) from sketch_input group by category;
select ds_hll_estimate(ds_hll_sketch(id)) from sketch_input;

Use HLL to compute distinct values transparently thru BI mode

set hive.optimize.bi.enabled=true;
select category,count(distinct id) from sketch_input group by category;
select count(distinct id) from sketch_input;

Use HLL to compute distinct values transparently thru BI mode - while utilizing a Materialized
View to store the intermediate sketches.

-- create an MV to store precomputed HLL values
create materialized view mv_1 as
 select category, ds_hll_sketch(id) from sketch_input group by category;

set hive.optimize.bi.enabled=true;
select category,count(distinct id) from sketch_input group by category;
select count(distinct id) from sketch_input;

	Datasketches Integration

