
KIP-759: Unneeded repartition canceling

Status
Motivation
Public Interfaces
Proposed Change
Usage
Concerns
Compatibility, Deprecation, and Migration Plan
Possible Alternatives

Status
Current state: Accepted, targeting 3.7

Discussion thread: here

JIRA:

 Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Each key changing operation in Kafka Streams (, , , etc.) now leads to automatic repartition before a stateful aggregation. selectKey map transform
However, repartition is not always necessary if the input stream is already correctly partitioned. In these cases, the automatic repartition brings in additional
overhead. As an example, if an input stream comes in partitioned by key1, calling the function selectKey(... => (key1, metric)).groupByKey
will trigger a repartition today.

In tickets and the option for canceling the unneeded repartition is requested. Repartition canceling is also needed for the KAFKA-4835 KAFKA-10844
efficient usage of operators proposed in : will always repartition by default, distinct() KIP-655 groupBy(...).windowedBy(...).distinct()
while this is not always needed in practice.

This KIP proposes a new interface for users to optimize the key changing operations (, , , etc.) in Kafka Streams. selectKey map transform

Public Interfaces
In accordance with , we introduce a new parameterless on KStreams DSL Grammar DSLOperation markAsPartitioned() KStream.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/202106.mbox/%3C1c00ba9b-313e-c46f-fe90-c912c1941ddf%40fizzdev.ee%3E
https://issues.apache.org/jira/browse/KAFKA-4835
https://issues.apache.org/jira/browse/KAFKA-10844
https://cwiki.apache.org/confluence/display/KAFKA/KIP-655%3A+Windowed+Distinct+Operation+for+Kafka+Streams+API
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+DSL+Grammar

public interface KStream<K, V> {
 /**
 * Marking the {@code KStream} as partitioned signals the stream is partitioned as intended,
 * and does not require further repartitioning in downstream key changing operations.
 *
 * <p>
 * Note that {@link KStream#markAsPartitioned()} SHOULD NOT be used with interactive query(IQ) or
{@link KStream#join}.
 * For reasons that when repartitions happen, records are physically shuffled by a composite key
defined in the stateful operation.
 * However, if the repartitions were cancelled, records stayed in their original partition by its
original key. IQ or joins
 * assumes and uses the composite key instead of the original key.
 * </p>
 *
 * @return a new, mutated {@code KStream} that will not repartition in subsequent operations.
 */
 KStream<K, V> markAsPartitioned();

}

Proposed Change
Calling the new DSLOperation will return a new, mutated KStream. The new instance will not repartition as downstream operations are chained onto it.
Whereas the original stream keeps its own internal property to operate in the default way.

Usage
Example: canceling repartition in a streams aggregation would look like:

stream
 .selectKey(... => (key1, metric))
 .markAsPartitioned()
 .groupByKey()
 .aggregate()

Example: fan out from the same stream:

KStream myStream = build.stream(...).map(...);

// the aggregation will not repartition as it works on a mutated KStream
myStream.markAsPartiitoned().groupByKey().aggregate(...);

// the join operation will repartition as it left joins with the original KStream
myStream.join(myOtherTable);

Concerns
The usage of this operation complicates the usage of IQ(Interactive Query) and joins. For reasons that when repartitions happen, records are
physically shuffled by a composite key defined in the stateful operation. However, when the repartitions are canceled, records stayed in their
original partition by their original key. IQ assumes and uses the composite key instead of the original key. That's when IQ can break downstream.
The same applies to joins.
In the documentation, we specifically advise against using the interface with IQ or joins.
However, a potential solution to support IQ is to provide a 'reverse mapping' for the composite key that restores the original key, which can then
be used for obtaining the metadata. We can follow up with a change when there is request.

Compatibility, Deprecation, and Migration Plan
No impact on existing users, no migration is needed.

Possible Alternatives
Option 1: Composite Key

If we don't want to introduce an unsafe operation, we might discuss introducing composite keys as an alternative.

CompositeKey<H, P> consists of a head and a postfix, and the partition of a composite key is defined by its 'head' only.always
Also, and must have the same partition for each .k CompositeKey(k, v) k
We will need to introduce operations that will not lead to repartition.selectCompositeKey

CompositeKey the design will be safe both from the pov of data locality and IQ but adds complexity to the usage.

Option 2: Optional configuration in Named Operations(Joined , Grouped , etc)

It would allow us to hit only the relevant parts of the DSL and be less prone to undesired behaviors when it comes to IQ or joins.
More generic, can be applied to KTable as well. In comparison, the approach is targeting the KStreams interface only markAsPartitioned()
where it focuses on a specific set of overhead/pain points introduced by . repartitionRequired
It touches on a larger surface area of the API.

	KIP-759: Unneeded repartition canceling

