
1.

2.

1.

2.

3.
1.
2.

1.

2.

KIP-787: MM2 manage Kafka resources with custom Admin
implementation.

Status
Motivation

The downsides of MM2 use AdminClient directly
Public Interfaces
Proposed Changes

Connector Configuration Properties
Example Configuration
MirrorMaker Configuration Properties
Example Configuration

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

JIRA: here

Motivation
MirrorMaker 2 uses directly to create topics, create new topic partitions and sync configurations like topic configs and ACLs by enabling AdminClient sy

 and . The current design runs with 2 main assumptions:nc.topic.configs.enabled sync.topic.acls.enabled

The user running MM2 has the following ACLs
`Create` ACLs for topics on the source clusters to create topics.heartbeat
`Create` and `Alter/AlterConfigs` ACLs to create topics, create partitions, update topics' config and topics' ACLs on the destination
clusters.

MM2 can bypass any existing Kafka resource solutions that management organizations runs and create/update resources outside this system.

These assumption wouldn't work for any organization that runs any sort of resource management or federated solutions where these systems are usually
the only application allowed to initializing a client with `Create` and`Alter/AlterConfigs` ACLs. And no other teams/groups/applications are allowed to have
this same level of ACLs to create such a client outside these systems.

While this approach simplifies the resource management for MM2, it creates a lot of pain for most organizations that try to integrate MM2 as part of their
Kafka ecosystem. Currently there 3 ways to deal with this issue:

Drop mirrored topics from a centralized/federated system and accept the risk of not tracing these topics. This direction will avoid conflict between
topics monitored by MM2 and the centralized system for resource management. However it will create capacity and budget issues. (more details
below in in the motivation)The downsides of MM2 use AdminClient directly
Creating mirrored topics up-front on destination clusters and disabling features like , sync.topic.configs.enabled sync.topic.acls.

. This approach need a lot of work especially if MM2 is running to mirror large volume of topics. For example mirroring with config enabled topic
 s=.*

Run watcher that sync Kafka cluster resource to Kafka
Any downtime for this watcher will impact the sync between MM2 and .management tools
Data Platform teams still know about the capacity after MM2 start to mirror data. So any capacity safeguard in these system wouldn't
apply.

An example for such a watcher is Strimzi K8S Topic Operator. Which recosiliate Topic and Topic's config between ZK and Topic Resources on
K8S however it doesn't have the same solution for UserOperator which make consumer group can't migrate without these ACLs created first.
(more details below in in the motivation)The downsides of MM2 use AdminClient directly

The downsides of MM2 use AdminClient directly

As mentioned before the usage of AdminClient directly within MM2 simplify the resource for MM2. Howevermanagement , it does create the following
problems for any users who use IaC (Infra-as-Code), federated solutions, or have a capacity/budget planning system for Kafka destination clusters. Here is
a list of potential MM2 bypass the organization ecosystem:undesired impact of

Capacity/Budgeting Planning:
MM2 automatically creates topics (breaking the rule of `auto.create.topics.enable=false`) and creates topic partitions on destination
clusters if the number of partitions increases on the source for any topic match regex/list of config. topic
Sync all topic configs include configurations that impact capacity like `retention.ms` and `retention.bytes`.

https://lists.apache.org/x/thread.html/rbdc99bc5fc5ec3737adf29ba1eaeab991050e49ef6ddddb5f386071a@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-13401

These two functionality in MM2 leads to increase disk usage on destination cluster. The team that runs the cluster will only notice the capacity
issue when their disk usage hits the threshold for their alerts.

 Provisioning conflict:

MM2 used `AdminClient` directly to perform the following functionality

Create a Kafka topic (no way to disable this)
Create new Kafka partitions (no way to disable this)
Sync Kafka Topic configurations (can be disabled, but then this reduces the value of MM2 potential for users)
Sync Kafka topic's ACLs (can be disabled, but this reduces the users' value). Disabling this feature also means that users must ensure
they have the right ACLs to the mirrored topics on the destination cluster before switching their consumers, especially when MM2 is used
for disaster recovery. It may lead to extra downtime for them.

The usage of directly causes an issue with teams that AdminClient

Manage their Kafka resources using tools like Strimizi or custom federated solutions. For example, Strimizi's user operator doesn't sync
the topic ACLs when MM2 is syncing topic ACLs. Strimzi documentation mentions that users must to disable MM2 sync.topic.acls.

 if they use . enabled UserOperator
Teams that run MM2 but don't own the destination cluster and not allowed to have the . In this case, Create/Alter/AlterConfigs
these teams don't have Admin access, but they may have access to Kafka management solutions, such as yahoo/CMAK REST API or
an in-house solution. For such a tool as CMAK REST API, these teams can update/create resources using CMAK REST API.

This KIP proposes a way for users to run MM2 with custom implementation for the Kafka resource manager in order to easily integrate MM2 with ecostheir
ystem.

Public Interfaces
The KIP proposes adding flexibility to how MM2 manage Kafka resources. By allowing MM2 to load custom implementation of Admin interface.

To make it easier for users to provide their custom implementation of Admin, the KIP will introduce class delegate to ForwardingAdmin KafkaAdminCli
ent.

The implemented class can be overridden using the following configurations.

forwarding.admin.class default value will be set to ForwardingAdmin with Map<String, Object> config to configure
KafkaAdminClient as delegate.
or can be configured based on cluster aliases using <cluster_alias>.cluster.forwarding.admin.class
The provided implementation must have a contractor that accept Map<String, Object> config to configure
KafkaAdminClient and any customised resource management clients

The configuration for custom resource management client and/or KafkaAdminClient can be passed using the following
prefix

admin.*
<cluster_alias>.cluster.admin.*

Proposed Changes
ForwardingAdmin class: The class must initialize Admin delegate to avoid implementing every method.

ForwardingAdmin.java

public class ForwardingAdmin implements Admin {
 private final Admin delegate;

 public ForwardingAdmin(Map<String, Object> config) {
 this.delegate = AdminClient.create(config);
 }

 @Override
 public CreateTopicsResult createTopics(Collection<NewTopic> newTopics, CreateTopicsOptions options) {
 return delegate.createTopics(newTopics, options);
 }

 // override rest of Admin interface to use delegate...
}

Add configuration forwarding.admin.class to MirrorConnectorConfig
Update All MM2 connectors to use the forwarding.admin.class

Add MirrorConnectorConfig.forwardingAdmin that will load forwarding.admin.class and return
ForwardingAdmin.
All Connectors and Tasks will replace AdminClient.create by MirrorConnectorConfig.forwardingAdmin

MirrorCheckpointTask
MirrorCheckpointConnector
MirrorSourceConnector

Use ForwardingAdmin in MirrorUtils instead of TopicAdmin to create internal compacted topics

Connector Configuration Properties

Properties common to the SourceConnector(s) and SinkConnector:

property default value description

forwarding.
admin.class

org.apache.kafka.clients.
admin.
ForwardingAdminClient

The fully qualified name of class that extend ForwardingAdminClient. The class must have a contractor that
accept configuration (Map<String, Object> config) to configure KafkaAdminClient and any other needed clients.

target.forwardi
ng.admin.
class

org.apache.kafka.clients.
admin.
ForwardingAdminClient

Override only for target clusterforwarding.admin.class

source.forward
ing.admin.
class

org.apache.kafka.clients.
admin.
ForwardingAdminClient

Override only for source clusterforwarding.admin.class

In addition, forwarding admin class will be re-using the following existing configs:

property description

source.admin.* overrides for the source cluster forwarding admin config

target.admin.* overrides for the target cluster forwarding admin config

Example Configuration

A sample configuration file ./config/connect-mirror-source.properties is provided for use case where source cluster use default org.apache.kafka.clients.
admin.ForwardingAdminClient however target cluster use custom class custom.package.admin.TargetForwardingAdminClient:

source.cluster.alias = A
target.cluster.alias = B

source.cluster.bootstrap.servers = A_localhost:9092
target.cluster.bootstrap.servers = B_localhost:9092

target.cluster.forwarding.admin.class = custom.package.admin.TargetForwardingAdminClient

// Common config for KafkaAdminClient in any ForwardingAdminClient
admin.security.protocol = SASL_SSL
admin.security.protocol=SASL_SSL
admin.sasl.mechanism=PLAIN

// Configure Source org.apache.kafka.clients.admin.ForwardingAdminClient
source.admin.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="
USERNAME1" password="PASSWORD1";

// Configure Target KafkaAdminClient in custom.package.admin.TargetForwardingAdminClient
target.admin.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="
USERNAME2" password="PASSWORD2";

// Configure Target custom ResourceManagmentRESTClient in custom.mypackage.admin.TargetForwardingAdminClient
target.admin.resource.management.url = https://kafka.resource.manager.com
target.admin.resource.management.keystore.path = /path/keystore
target.admin.resource.management.truststore.path = /path/truststore/ca.pem

custom.package.admin.TargetForwardingAdminClient looks like this

package custom.mypackage.admin;

class TargetForwardingAdminClient extends ForwardingAdminClient {
 ResourceManagmentRESTClient customResourceManager;
 public TargetForwardingAdminClient(Map<String, Object> configs) {
 super(config)

 customResourceManager = ResourceManagmentRESTClient.create(configs) //method that know how to
create client.
 }

 @Override
 public CreatePartitionsResult createPartitions(Map<String, NewPartitions> newPartitions,
CreatePartitionsOptions options) {
 // use customResourceManager to updateTopicPartition
 }
 //
}

MirrorMaker Configuration Properties

The high-level configuration file required by the MirrorMaker driver supports the following properties:

property default value description

<cluster>.forward
ing.admin.class

org.apache.kafka.clients.
admin.
ForwardingAdminClient

The fully qualified name of class that extend ForwardingAdminClient. The class must have a
contractor that accept configuration (Map<String, Object> config) to configure needed clients.

In addition, forwarding admin class will be re-using the following existing configs:

property description

.admin.*<cluster> overrides for the cluster forwarding admin config

Example Configuration

clusters = primary, backup
primary.bootstrap.servers = A_localhost:9092
backup.bootstrap.servers = B_localhost:9092

// Common config for KafkaAdminClient in any ForwardingAdminClient
admin.security.protocol = SASL_SSL
admin.security.protocol=SASL_SSL
admin.sasl.mechanism=PLAIN

// Configure Primary org.apache.kafka.clients.admin.ForwardingAdminClient
primary.admin.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="
USERNAME1" password="PASSWORD1";

// Configure Target KafkaAdminClient in custom.package.admin.TargetForwardingAdminClient
backup.admin.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="
USERNAME2" password="PASSWORD2";

// Configure Target custom ResourceManagmentRESTClient in custom.mypackage.admin.TargetForwardingAdminClient
backup.admin.resource.management.url = https://kafka.resource.manager.com
backup.admin.resource.management.keystore.path = /path/keystore
backup.admin.resource.management.truststore.path = /path/truststore/ca.pem

Compatibility, Deprecation, and Migration Plan

1.
2.
3.

When users upgrade an existing MM2 cluster they don’t need to change any of their current configuration as this proposal maintains the default
behaviour for MM2.

Rejected Alternatives
Adding a new interface called KafkaResourceManager ("was the original proposal") that defines how MM2 will create, modify, and list any Kafka
topics and ACLs. MirrorMaker2’s original behaviour will be kept in DefaultResourceManager.

And override the implementation using the following configurations.

resource.manager.class default value will be set to DefaultResourceManager
or can be configured based on cluster aliases using <cluster_alias>.resource.manager.class

The downside with this is it may create confusing for users between Admin and ResourceManager
Manage creating and modifying Kafka topics and ACLs outside MM2 by building a separate tool that monitors the same set of topics as
MirrorMaker2 and create/modify topics and ACLs once it detects configuration changes. The downsides with this are

This will be a duplicate effort as MM2 already has all this logic implemented; it only needs to use a different client than AdminClient.
MM2 still bypass any capacity the ecosystem would have in place. safeguards
Any downtime with this tool will cause conflict between MM2 mirrored resources and management resource system.

	KIP-787: MM2 manage Kafka resources with custom Admin implementation.

