KIP-795: Add public APIs for AbstractCoordinator

Status
Motivation
Public Interfaces
Proposed Changes
© AbstractCoordinator
O Other classes made public
© Other changes
© Changes not included on this KIP changes
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Status

Current state: Discarded
Discussion thread: here
JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

After Kafka moved the rebalancing responsibilities from brokers to clients, many other applications (Kafka Connect, Kafka Streams, Confluent Schema
Registry) have relied on the Group Membership Protocol to implement resource allocation amongst distributed processes.

Kafka Connect's WorkerCoordinator class extends AbstractCoordinator, and uses the rebalance mechanism to distribute tasks to its workers. In the
same spirit, Confluent Kafka Registry - and its SchemaRegistryCoordinator - relies in the AbstractCoordinator class for leadership election (which
instance of a Schema Registry cluster can accept writes). These two are in addition to the ConsumerCoordinator that the Kafka Consumer uses internally,
and indirectly Kafka Streams.

We've adopted this generic, extensible protocol to implement a framework that solves both the distributed resource management and leader election use
cases our engineering teams face when building their systems. The powerful primitives exposed by the AbstractCoordinator class have made it relatively
easy to build distributed resource management systems on top of Apache Kafka.

A good example of how other projects can leverage AbstractCoordinator APIs to implement resource management is this PR to add HA capabilities to
Kafka Monitor. We're looking into adding these capabilities to other systems in our Kafka Infrastructure (Kafka Cruise Control being the next one).

We think it's time for the AbstractCoordinator to become part of Kafka's public API, so we can ensure backwards compatibility in future versions of the
client libraries. In fact, we were inspired by Gwen Shapira's talk at the strangeloop conference in '18 [https://www.youtube.com/watch?v=MmLezWRI3Ys]
which gave us a new perspective when redesigning our existing distributed leader election system.

Finally, we feel that the protocol is well designed and extensible, so advertising Kafka's Coordinator capabilities might be a good idea, as it's applicable to
many use cases.

Public Interfaces

This KIP introduces a new Coordinator interface in the org.apache.kafka.consumer.clients.consumer package.

Coordinator.java

* Licensed to the Apache Software Foundation (ASF) under one or nore

* contributor license agreenents. See the NOTICE file distributed with

* this work for additional information regarding copyright ownership.

* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in conpliance with

* the License. You may obtain a copy of the License at

* http://ww. apache. org/licenses/ LI CENSE-2. 0

* Unless required by applicable law or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASIS,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
* See the License for the specific | anguage governing perm ssions and

* |imtations under the License.

https://lists.apache.org/thread/tylmcmtkv623hlcogn61t83hvy178zc1
https://issues.apache.org/jira/browse/KAFKA-13434
https://github.com/linkedin/kafka-monitor/pull/355
https://github.com/linkedin/kafka-monitor/pull/355
https://www.youtube.com/watch?v=MmLezWRI3Ys

*/

package org. apache. kaf ka. cl i ents. consuner;

import java.io.d oseabl e;

import java.nio.ByteBuffer;

inport java.util.List;

import java.util.Mp;

inport java.util.Qbjects;

i nport org. apache. kaf ka. cl i ents. consuner . i nternal s. Consuner Coor di nat or ;

i mport org. apache. kaf ka. conmon. nessage. Joi nG oupRequest Dat a. Joi nGr oupRequest Pr ot ocol ;
i nport org. apache. kaf ka. conmon. message. Joi nGr oupResponseDat a;

i mport org. apache. kaf ka. cormon. nessage. Joi nG oupResponseDat a. Joi nG oupResponseMenber ;

*/

Coordi nator interface inplenents group nanagenent for a single group nenber by interacting with
a designated Kaf ka broker (the coordinator). Goup senantics are provided by extending this class.
See {@ink ConsunerCoordi nator} for exanple usage.

Froma high level, Kafka's group management protocol consists of the followi ng sequence of actions:

Group Registration: Goup nenbers register with the coordinator providing their own netadata
(such as the set of topics they are interested in).
G oup/ Leader Sel ection: The coordi nator select the nenbers of the group and chooses one nenber
as the leader.
State Assignment: The |leader collects the netadata fromall the nenbers of the group and
assigns state.
Goup Stabilization: Each nenber receives the state assigned by the | eader and begins
processing.

To leverage this protocol, an inplenentation nust define the fornat of netadata provi ded by each
menber for group registration in {@ink #netadata()} and the format of the state assi gnment provided
by the leader in {@ink #performAssignment(String, String, List)} and becones available to nenbers in
{@ink #onJoi nConplete(int, String, String, ByteBuffer)}.

Note on locking: this class shares state between the caller and a background thread which is

used for sending heartbeats after the client has joined the group. All nutable state as well as
state transitions are protected with the class's nmonitor. Generally this nmeans acquiring the |ock
before reading or witing the state of the group (e.g. generation, nenberld) and hol ding the Iock
when sending a request that affects the state of the group (e.g. JoinG oup, LeaveG oup).

public interface Coordinator extends C oseable {

/**

* Unique identifier for the class of supported protocols (e.g. "consumer" or "connect").
* @eturn Non-null protocol type name

*/

String protocol Type();

* Get the current list of protocols and their associ ated netadata supported

* by the local nenmber. The order of the protocols in the nmap indicates the preference

* of the protocol (the first entry is the nost preferred). The coordinator takes this

* preference into account when selecting the generation protocol (generally nore preferred

* protocols will be selected as long as all nmenbers support themand there is no di sagreenent
* on the preference).

* @eturn Non-enpty map of supported protocols and netadata

*/

Li st <Joi nG oupMet adat a> net adat a() ;

/**

* I nvoked prior to each group join or rejoin. This is typically used to perform any
* cleanup fromthe previous generation (such as conmtting offsets for the consuner)
* @aram generation The previous generation or -1 if there was none

* @aram nenberld The identifier of this menber in the previous group or
*/

voi d onJoi nPrepare(int generation, String nenberld);

if there was none

| **

* Perform assignnent for the group. This is used by the |leader to push state to all the nenbers

* of the group (e.g. to push partition assignnents in the case of the new consuner)
* @aramleaderld The id of the |eader (which is this nenber)
* @aram protocol The protocol selected by the coordinator
* @aram al | Menber Met adat a Metadata fromall nenbers of the group
* @eturn A nap fromeach nenber to their state assignnent
*/
Map<String, ByteBuffer> performAssignment(String |eaderld,
String protocol,
Li st <Assi gnnent Met adat a> al | Menber Met adat a) ;

/**
* | nvoked when a group nmenber has successfully joined a group.
*
* @aram generation The generation that was joi ned
* @aram nenberld The identifier for the local nmenber in the group
* @aram protocol The protocol selected by the coordinator
* @aram nenber Assi gnnent The assi gnnent propagated fromthe group |eader
*/
voi d onJoi nConpl ete(int generation,
String nenberld,
String protocol,
Byt eBuf f er menber Assi gnment) ;

/**

* I nvoked prior to each | eave group event. This is typically used to clean up assigned partitions;
* note it is triggered by the consumer's APl caller thread (i.e. background heartbeat thread woul d
* not trigger it even if it tries to force |eaving group upon heartbeat session expiration)

*/

default void onLeavePrepare() {}

/**

* Wapper for {@ink Joi nG oupRequest Protocol} protocol class.
*/

cl ass Joi nGroupMet adata {

private final Joi nG oupRequest Protocol del egate;

public Joi nGroupMet adata() {
t hi s. del egate = new Joi nGr oupRequest Prot ocol ();

}

public Joi nGroupMet adata(String nane, byte[] netadata) {
this();
t hi s. del egat e. set Nane(nane) . set Met adat a(net adat a) ;

}

public String name() {
return del egate. nane();

}

public ByteBuffer netadata() {
return ByteBuffer.wap(del egate. metadata());

}

public Joi nGroupMet adat a set Name(String nanme) {
del egat e. set Nane(nane) ;
return this;

}

public Joi nGroupMet adat a set Metadata(byte[] v) {
del egat e. set Met adat a(v) ;
return this;

}

@verride
public bool ean equal s(Object o) {
if (this == 0) {
return true;
}
if (o ==null || getdass() !=o.getCass()) {
return false;

}
Joi nG oupMet adata that = (Joi nG oupMet adata) o;

return Cbj ects. equal s(del egate, that.del egate);

}

@verride
public int hashCode() {
return Cbjects. hash(del egate);

}

@verride
public String toString() {
return "Joi nG oupMet adat a{" +
"del egate=" + del egate +

1
}

/**

* Wapper for {@ink Joi nG oupResponseMenber} protocol class.
*/

cl ass Assi gnment Met adata {

private final Joi nG oupResponseDat a. Joi nG oupResponseMenber del egat e;

public Assignment Metadata() {
thi s. del egate = new Joi nG oupResponseMenber () ;
}

public String menmberld() {
return del egate. menber!d();

}

public String grouplnstanceld() {
return del egate. groupl nstancel d();

}

public ByteBuffer netadata() {
return ByteBuffer.wap(del egate. netadata());

}

public Assignment Met adata set Menber1d(String nenberld) {
del egat e. set Menber | d(menber 1 d);
return this;

}

public Assignment Met adat a set Groupl nstancel d(String grouplnstanceld) {
del egat e. set Groupl nst ancel d(gr oupl nst ancel d) ;
return this;

}

public Assignnent Met adata set Met adata(byte[] netadata) {
del egat e. set Met adat a(et adat a) ;
return this;

}

@verride
public bool ean equal s(Object 0) {
if (this == 0) {
return true;
}
if (o ==null || getdass() !=o.getCass()) {
return false;
}
Assi gnnment Met adata that = (Assi gnnent Met adata) o;
return Cbj ects. equal s(del egate, that.del egate);

}

@verride
public int hashCode() ({
return del egat e. hashCode();

}

@verride
public String toString() {
return "Assignment Met adata{" +
"del egate=" + del egate +

1

It also moves several classes from the org.apache.kafka.consumer.clients.consumer.internals package to the org.apache.kafka.consumer.clients.
consumer package, as detailed on the Proposed Changes section below.

Proposed Changes

For a list of the propose changes, please refer to the the pull-request: KIP-795 Make AbstractCoordinator part of the public APl #11515

AbstractCoordinator

® Move the AbstractCoordinator class from the o.a.k.c.c.consumer.internals to the o.a.k.c.c.consumer package
® Extract its abstract methods into a new org.apache.kafka.consumer.clients.consumer.Coordinator interface
®* Remove references to the protocol types from its public APIs
© org.apache.kafka.common.message.JoinGroupRequestData.JoinGroupRequestProtocolCollection is replaced by a java.util. Map
o org.apache.kafka.common.message.JoinGroupResponseData.JoinGroupResponseMember is wrapped into a new AssignmentMetadate
type
® The visibility of some methods have been raised (from default to protected), so classes extending AbstractCoordinator (e.g.
ConsumerCoordinator) can make use of them.

Other classes made public
A few other classes are also moved from org.apache.kafka.clients.consumer.internals package to org.apache.kafka.clients.consumer:
® ConsumerNetworkClient

® Heartbeat
® RequestFuture / RequestFutureAdapter / RequestFutureListener

Other changes

Due to the removal of references to the protocol type classes from AbstractCoordinator, some adjustments needed to be made on the
ConsumerCoordinator and Kafka Connect classes (ConnectAssignor, EagerAssignor, IncrementalCooperativeAssignor and WorkerCoordinator) to support
the new interface.

These classes are all internal to Kafka, so clients should not be impacted at all.

Changes not included on this KIP changes

This KIP does not include any changes to the Admin APIs. Potential changes to the Admin/KafkaAdminClient classes (such as adding methods to query
for group metadata from brokers) will be addressed in a separate KIP.

Compatibility, Deprecation, and Migration Plan

® As all members of the new interface are public, clients who extend the existing AbstractCoordinator class will potentially have to change the
visibility of the overridden abstract methods.

® Also, as classes are being relocated, the package names of clients extending AbstractCoordinator will have to change accordingly.

® No functional changes are planned as part of this KIP, so these changes won't impact the vast majority of clients.

Rejected Alternatives

The obvious alternative is to keep AbstractCoordinator as an internal API. Clients who use these APIs might break in future versions of the library, and
this is a risk that might not be and acceptable for many users.

https://github.com/apache/kafka/pull/11515

	KIP-795: Add public APIs for AbstractCoordinator

