
KIP-802: Validation Support for Kafka Connect SMT and
Converter Options

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan

Compatibility
Behavioral Compatibility
Binary Compatibility
Source Compatibility

Deprecation
Migration

Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA: KAFKA-13478

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The existing Kafka Connect REST API method PUT /connector-plugins/(string: name)/config/validate lets users validate connector
configuration. This is very useful to make sure that a connector configuration is valid before actually putting the connector in place.

No such validation functionality exists for the options of single message transforms (SMTs, KIP-66), SMT predicates (KIP-585), as well as (header)
converters. I.e. the only way for a user to learn about invalid SMT- or converter-related configuration is to register a connector with that SMT or converter.
This KIP aims at providing validation functionality for SMTs and converters, e.g. benefitting tools like UIs and CLIs interacting with Kafka Connect which
can inform the user about invalid SMT or converter configuration early on.

Public Interfaces
A method will be added to the default Config validate(Map<String, String> smtConfigs) org.apache.kafka.connect.transforms.

 interface.Transformation

A method will be added to the default Config validate(Map<String, String> predicateConfigs) org.apache.kafka.connect.
 interface.transforms.predicates.Predicate

A method will be added to the default Config validate(Map<String, String> converterConfigs) org.apache.kafka.connect.
 interface.storage.Converter

A method will be added to the default Config validate(Map<String, String> headerConverterConfigs) org.apache.kafka.
 interface.connect.storage.HeaderConverter

The implementation of the existing REST API method will be expanded so that it PUT /connector-plugins/(string: name)/config/validate
invokes the validate() method for all SMTs, predicates, and (header) converters specified in the given connector configuration and returns any validation
errors as part of the existing response type structure.

Proposed Changes
The following method (inspired by the existing org.apache.kafka.connect.connector.Connector.validate(Map<String, String>)
method) will be added to the interface :org.apache.kafka.connect.transforms.Transformation

https://lists.apache.org/thread/ncgy57lx6b2c8jhh26jr65rr9snmpqg7
https://issues.apache.org/jira/browse/KAFKA-13478
https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect
https://cwiki.apache.org/confluence/display/KAFKA/KIP-585%3A+Filter+and+Conditional+SMTs

 /**
 * Validate the SMT configuration values against configuration definitions.
 * @param smtConfigs the provided configuration values
 * @return The updated configuration information given the current configuration values
 *
 * @since 3.2
 */
 default validate(Map<String, String> Config smtConfigs) {

 ConfigDef configDef = config();

 if (null == configDef) {

 throw new ConnectException(

 String.format("%s.config() must return a ConfigDef that is not null.", this.getClass().getName())

);

 }

 List<ConfigValue> configValues = configDef.validate(smtConfigs);

 return new Config(configValues);

 }

The same method will be added to the org.apache.kafka.connect.transforms.predicates.Predicate, org.apache.kafka.connect.
, and interfaces. Non-nullability for configDef must not be storage.Converter org.apache.kafka.connect.storage.HeaderConverter

enforced in the header converter case as per .this email discussion

As this is a default method, this change is generally backwards compatible, i.e. existing , , , and Transformation Predicate Converter HeaderConver
 implementations will continue to work as-is.ter

The method org.apache.kafka.connect.runtime.AbstractHerder.validateConnectorConfig(Map<String, String>, boolean) will
be adjusted to:

Determine the list of configured SMTs/predicates/converters from the connector configuration passed for validation
Instantiate each configured SMTs/predicates/converters and invoke its validate() method with the subset of the connector configuration of that
particular SMTs/predicates/converters
Add the validation result(s) to the existing result type structure

This will make sure that the attributes are validated upon explicit calls to the REST method as well as when a SMTs/predicates/converters validate
connector gets registered or updated.

Compatibility, Deprecation, and Migration Plan

Compatibility

The proposed change has generally good compatibility characteristics; the following compatibility aspects are pointed out:

Behavioral Compatibility

If a user had called the REST API’s validation method with an invalid SMT configuration in the past, this would have been ignored, whereas in the future,
this call will yield the corresponding validation errors. While this is a behavioral change, it is a desirable one, as users will benefit from the early validation
feedback provided through this change. It seems highly unlikely that a user intentionally relied on SMT configuration failures to not be reported.

If an existing , , , or Transformation Predicate Converter HeaderConverter implementation declares a method with the exact same signature as
the proposed validate() method, it will be invoked by AbstractHerder.validateConnectorConfig(), which may be surprising. Impact of this
should be low, apart from the fact that the same validation routine will potentially be invoked multiple times.

Binary Compatibility

Apart from the following exception, the proposed change is binary compatible, i.e. an existing , , , or Transformation Predicate Converter HeaderCon
verter implementation class file compiled against an old version of the API can be used with the new API version without problems.

The exception is if the transformation implementation class "already implements another interface that declares a default method with a matching
signature, and the client type already refers to the default method from the other interface (except when using the Interface.super.method()
notation" (see here for details).

Chances for this to happen should be very low.

https://lists.apache.org/thread/9jwtqzocbw9flykzb5wjl0q8tml8t2oj
https://wiki.eclipse.org/Evolving_Java-based_APIs_2

Source Compatibility

If an existing Transformation, Predicate, Converter, or HeaderConverter implementation declares

a method validate(Map<String, String> connectorConfigs) with a return type other than Config, or
a method Config validate(Map<String, String> connectorConfigs) with another visibility than public,

then a compilation error will be raised when compiling this implementation type against the new API version. The same is the case when recompiling the
implementation class in the situation described above.

In these situations, the implementation type must be adjusted accordingly, e.g. by renaming that existing method.

Chances for this to happen should be very low.

Deprecation

As this is a new API, no deprecations are needed.

Migration

There are no migration concerns. In documentation, transformation authors may be encouraged to override the proposed new validation method with
advanced custom validation logic if needed.

Rejected Alternatives
Alternative 1: There could be a new, separate REST method, solely focused on validating SMT configuration. This seems disadvantageous, as a
user then would have to make two REST API calls for validating an entire connector configuration
Alternative 2: No API for validating SMT options gets added, keeping the current status quo; This seems disadvantageous, as users then continue
to have no way for learning about invalid SMT configuration without actually registering a connector
Alternative 3: Add a query parameter such as to the existing connector registration endpoint; This seems ?validate-only=true
disadvantageous, as it -- while providing the desired capability -- would be rather inconsistent with the current REST API design which defines
separate endpoints for validation and registration

	KIP-802: Validation Support for Kafka Connect SMT and Converter Options

