
KIP-807: Refactor KafkaStreams exposed metadata 
hierarchy

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: "Under Discussion"

Discussion thread:  here

JIRA: KAFKA-12370

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently, there are different methods in  that expose different type of Metadata classes. Several use cases exists in which a user would KafkaStreams
need to retrieve all, or several, of the different Metadata classes.

At the moment of this KIP, we have the following Metadata classes:

StreamsMetadata
TaskMetadata
ThreadMetadata
KeyQueryMetadata

And the  API has the following methods:KafkaStreams

metadataForLocalThreads, which returns a set of ThreadMetadata
queryMetadataForKey, which returns a KeyQueryMetadata
streamsMetadataForStore, which returns a set of StreamsMetadata
metadataForAllStreamsClients, which returns a set of StreamsMetadata

The motivation of this KIP is to simplify the API, by creating a hierarchy of the Metadata classes and consistently returning the one in the top level.

Reasoning for the new hierarchy of the Metadata classes (taken from the Jira issue):

StreamsMetadata represent the metadata for the client, which includes the set of ThreadMetadata for its existing thread and the set of 
TaskMetadata for active and standby tasks assigned to this client, plus client metadata including hostInfo, embedded client ids.
ThreadMetadata includes name, state, the set of TaskMetadata for currently assigned tasks.
TaskMetadata includes the name (including the sub-topology id and the partition id), the state, the corresponding sub-topology description 
(including the state store names, source topic names).
KeyQueryMetadata could be deprecated and instead use a combination of the previous ones.

As described in the Jira task:

> To illustrate as an example, to find out who are the current active host / standby hosts of a specific store, we would call streamsMetadataForStore, and 
for each returned StreamsMetadata we loop over their contained TaskMetadata for active / standby, and filter by its corresponding sub-topology's 
description's contained store name.

Public Interfaces
Deprecate methods in  returning metadata classes that are not , and create new ones with similar semantics that KafkaStreams StreamsMetadata
would return  .StreamsMetadata

org.apache.kafka.streams.KafkaStreams

public class KafkaStreams implements AutoCloseable {

        ...

https://lists.apache.org/thread/zvhxvbmb85p28kc9lk8bf9omf1rzovmh
https://issues.apache.org/jira/browse/KAFKA-12370


        /**
     * Finds the metadata containing the active hosts and standby hosts where the key being queried would 
reside.
     *
     * @param storeName     the {@code storeName} to find metadata for
     * @param key           the key to find metadata for
     * @param keySerializer serializer for the key
     * @param <K>           key type
     * Returns {@link KeyQueryMetadata} containing all metadata about hosting the given key for the given store,
     * or {@code null} if no matching metadata could be found.
     * @deprecated since 3.2.0. Use {@link #metadataForKey(String, Object, Serializer)} instead.
     */
    @Deprecated
    public <K> KeyQueryMetadata queryMetadataForKey(final String storeName,
                                                    final K key,
                                                    final Serializer<K> keySerializer) {
                ...
    }

    /**
     * Finds the metadata containing the active hosts and standby hosts where the key being queried would 
reside.
     *
     * @param storeName     the {@code storeName} to find metadata for
     * @param key           the key to find metadata for
     * @param partitioner the partitioner to be use to locate the host for the key
     * @param <K>           key type
     * Returns {@link KeyQueryMetadata} containing all metadata about hosting the given key for the given 
store, using the
     * the supplied partitioner, or {@code null} if no matching metadata could be found.
     * @deprecated since 3.2.0. Use {@link #metadataForKey(String, Object, StreamPartitioner)} instead.
     */
    @Deprecated
    public <K> KeyQueryMetadata queryMetadataForKey(final String storeName,
                                                    final K key,
                                                    final StreamPartitioner<? super K, ?> partitioner) {
                ...
        }

    /**
     * Finds the metadata containing the active hosts and standby hosts where the key being queried would 
reside.
     *
     * @param storeName     the {@code storeName} to find metadata for
     * @param key           the key to find metadata for
     * @param keySerializer serializer for the key
     * @param <K>           key type
     * Returns a collection of {@link StreamsMetadata} containing all metadata about hosting the given key for 
the given
     * store, or {@code null} if no matching metadata could be found.
     */
    public <K> Collection<StreamsMetadata> metadataForKey(final String storeName,
                                                          final K key,
                                                          final Serializer<K> keySerializer) {
                ...
    }

    /**
     * Finds the metadata containing the active hosts and standby hosts where the key being queried would 
reside.
     *
     * @param storeName     the {@code storeName} to find metadata for
     * @param key           the key to find metadata for
     * @param partitioner the partitioner to be use to locate the host for the key
     * @param <K>           key type
     * Returns a collection {@link StreamsMetadata} containing all metadata about hosting the given key for the 
given
     * store, using the the supplied partitioner, or {@code null} if no matching metadata could be found.
     */



    public <K> Collection<StreamsMetadata> metadataForKey(final String storeName,
                                                          final K key,
                                                          final StreamPartitioner<? super K, ?> partitioner) {
        ...
    }

        /**
     * Returns runtime information about the local threads of this {@link KafkaStreams} instance.
     *
     * @return the set of {@link ThreadMetadata}.
     * @deprecated since 3.2.0. Use {@link #localMetadata()} instead.
     */
    @Deprecated
    public Set<ThreadMetadata> metadataForLocalThreads() {
        ...
    }

    /**
     * Returns metadata about the local {@code KafkaStreams} instance.
     * Note: this is a point in time view and it may change due to partition reassignment.
     *
     * @return {@link StreamsMetadata} for this local {@code KafkaStreams} instance.
     */
    public StreamsMetadata localMetadata() {
        ...
    }

        ...

}

Extend the  API to include   and .StreamsMetadata ThreadMetadata TasksMetadata



org.apache.kafka.streams.StreamsMetadata

/**
 * Metadata of a Kafka Streams client.
 */
public interface StreamsMetadata {

        ...

        /**
     *
     * @return metadata of this client threads
     */
    Set<ThreadMetadata> threadMetadata();

    /**
     * Metadata of all active tasks assigned to this client.
     *
     * @return metadata of the active tasks
     */
    Set<TaskMetadata> activeTasks();

    /**
     * Metadata of all standby tasks assigned to this client.
     *
     * @return metadata of the standby tasks

     */
    Set<TaskMetadata> standbyTasks();

        ...

}

Extend  API to include the state and the store of given task.TaskMetadata

org.apache.kafka.streams.TaskMetadata

public interface TaskMetadata {

    ...

    /**
     * State of the given task
     *
     * @return a String representing the task state
     */
    String state();

    /**
     * Names of the state stores assigned to the given task
     *
     * @return names of the state stores assigned to the given task
     */
    Set<String> stateStoreNames();

        ...
}



Deprecate  class in favour of using  and .KeyQueryMetadata StreamsMetadata TaskMetadata

org.apache.kafka.streams.KeyQueryMetadata

/**
 * Represents all the metadata related to a key, where a particular key resides in a {@link KafkaStreams} 
application.
 * It contains the active {@link HostInfo} and a set of standby {@link HostInfo}s, denoting the instances where 
the key resides.
 * It also contains the partition number where the key belongs, which could be useful when used in conjunction 
with other APIs.
 * e.g: Relating with lags for that store partition.
 * NOTE: This is a point in time view. It may change as rebalances happen.
 * @deprecated since 3.2.0. Use {@link StreamsMetadata instead}
 */
@Deprecated
public class KeyQueryMetadata {
        ...
}

Proposed Changes
StreamsMetadata  will become the central and principal class in when it comes to retrieving metadata for Streams. Through this class, one will be able 
to access all relevant metadata (streams, tasks and threads ones). As described before, changes for this class include adding sets for its ThreadMetadata
, and  sets for its active and standby tasks.TaskMetadata

TaskMetadta  class will be extended to include the task's state and the stores assigned to the given task.

To keep compatibility, old methods in will be deprecated (and deleted KafkaStreams returning Set<T  and  hreadMeadata> KeyQueryMetadata
in subsequent releases), while new methods returning   will be introduced.Set<StreamsMetadata>

The deprecated methods are only used, at the moment, within the test classes or internal classes which can be safely migrated and rewritten to use the 
newly introduced methods.

The internal StreamsMetadataState can be safely cleaned by removing usages of .KeyQueryMetadata

Compatibility, Deprecation, and Migration Plan
Changes are source compatible as old methods and classes are only deprecated and not deleted. Deprecated methods will be deleted in subsequent 
releases.

List of actions users would need to take to migrate to this version:

Users of   should migrate to Streams#keyQueryMetadataForKey Streams#metadataForKey
Subsequently, using  and its full API instead of the deprecated aStreamsMetadta KeyQueryMetadat

Users of  should migrate to Streams#metadataForLocalThreads Streams#localMetadata

Rejected Alternatives
No rejected alternative at the moment.


	KIP-807: Refactor KafkaStreams exposed metadata hierarchy

