
KIP-808: Add support for different unix precisions in
TimestampConverter SMT

Status
Motivation
Public Interfaces
Proposed Changes

New config property for TimestampConverter
java.util.Date and SimpleDateFormat limitations
int32 and seconds

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Name the field epoch.precision
Use seconds, millis, micros, nanos or s,ms,us,ns as values

Status
Current state: Accepted

Discussion thread: here

Vote thread: here

JIRA: KAFKA-13511

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently, the Kafka Connect SMT TimestampConverter can convert Timestamp from multiples sources types (String, Unix Long or Date) into different
target types (String, Unix Long or Date).

The problem is that Unix Long as a source or as a target type must be with milliseconds precision.

In many cases, Unix time is represented with different precisions within external systems : seconds, microseconds, nanoseconds.

When such case arise, Kafka Connect can't do anything expect pass along the Unix Long and leave the conversion to another layer.

This issue was raised several times :

KAFKA-12364
KAFKA-10561

TimestampConverter should have a config to define which precision to use when converting from and to Long Unix timestamp.

Public Interfaces

name description type default valid values importance

unix.
precision

The desired unix precision for the timestamp. Used to generate the output when
type=unix or used to parse the input if the input is a Long.

Note: This SMT will cause precision loss during conversions from and to values
with sub-milliseconds components.

String millise
conds

seconds, , milliseconds mic
, roseconds nanoseconds

low

Proposed Changes

New config property for TimestampConverter

Implementation details to be discussed :

TimeUnit.MILLISECONDS.toMicros(unixMillis) and so on for the other conversions seems the easiest way.

Unix Long to Timestamp example:

https://lists.apache.org/thread/t51lmxjdt3k4y990s2c378529lwtt0q0
https://lists.apache.org/thread/xnxknn89gmhv49c0k0hpm7wn970t63rt
https://issues.apache.org/jira/browse/KAFKA-13511
https://issues.apache.org/jira/browse/KAFKA-12364
https://issues.apache.org/jira/browse/KAFKA-10561

"transforms.TimestampConverter.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
"transforms.TimestampConverter.field": "event_date_long",
"transforms.TimestampConverter.unix.precision": "microseconds",
"transforms.TimestampConverter.target.type": "Timestamp"

String to Unix Long nanoseconds example:

"transforms.TimestampConverter.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
"transforms.TimestampConverter.field": "event_date_str",
"transforms.TimestampConverter.format": "yyyy-MM-dd'T'HH:mm:ss.SSS",
"transforms.TimestampConverter.target.type": "unix",
"transforms.TimestampConverter.unix.precision": "nanoseconds"

java.util.Date and SimpleDateFormat limitations

Since these classes can only handle precisions down to the millisecond, it should be noted that:

converting source Unix Long microseconds or nanos into any target type leads to a precision loss (truncation after millis)
converting any source type into target Unix Long microseconds or nanos, the part after milliseconds will always be 0
A KIP that address Date vs Instant may be more appropriate but it impacts so much of the code that I believe this is a good first step.

int32 and seconds

Systems that produces int32 into Kafka should willingly chain Cast SMT and then TimestampConverter SMT if they want to use this feature.

"transforms": "Cast,TimestampConverter",
"transforms.Cast.type": "org.apache.kafka.connect.transforms.Cast$Value",
"transforms.Cast.spec": "event_date_int:int64",
"transforms.TimestampConverter.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
"transforms.TimestampConverter.field": "event_date_int",
"transforms.TimestampConverter.unix.precision": "seconds",
"transforms.TimestampConverter.target.type": "Timestamp"

Compatibility, Deprecation, and Migration Plan
The change will not break the compatibility.

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

Name the field epoch.precision

Since epoch is not a measure but rather a point in time, it can't be associated to a precision.

It makes more sense to name the field for that reason.unix.precision

Use , , , or as valuesseconds millis micros nanos s,ms,us,ns

seconds is a unit, but millis micros, nanos are really just prefixes. Mixing up doesn't work well.

s, ms, µs, ns are a valid SI symbols but the µs (or its accepted equivalent) can be confusing.us

For clarity, it was decided to use the plaintext naming convention.

	KIP-808: Add support for different unix precisions in TimestampConverter SMT

