
KIP-811: Add config repartition.purge.interval.ms to Kafka
Streams

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA: here

Pull : Request here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka Streams treats repartition topics differently to regular topics. Instead of setting arbitrary retention criteria and having the broker cleanup old records,
Kafka Streams sets infinite retention on repartition topics and explicitly deletes records once they've been committed to the next topic in their Topology.
Currently, this is done every time the Task is committed, resulting in explicit "delete records" requests being sent every commit.interval.ms
milliseconds.

When is set very low, for example when is set to , this causes delete records commit.interval.ms processing.guarantee exactly_once_v2
requests to be sent extremely frequently, potentially reducing throughput and causing a high volume of log messages to be logged by the brokers.

Public Interfaces
New configuration options

Name Type Importance Default Description

repartition.purge.
interval.ms

Long LOW 30000 The minimum interval in milliseconds with which to delete fully consumed records from repartition
topics. Purging will occur after at least this value since the last purge, but
may be delayed until later. (Note, unlike , the default for this value remains commit.interval.ms
unchanged when is set to).processing.guarantee exactly_once_v2

Proposed Changes
Adding a new configuration option, , that configures the period of these explicit record deletions, will resolve the repartition.purge.interval.ms
issue by enabling users to tune the and separately.commit.interval.ms repartition.purge.interval.ms

Compatibility, Deprecation, and Migration Plan
The interval between explicit delete requests for repartition records will no longer be coupled to . Default behaviour is commit.interval.ms
unchanged, however:

When is explicitly modified by the user, old repartition records will no longer be deleted on every commit.commit.interval.ms
When is set to , since the default is changed internally to processing.guarantee exactly_once_v2 commit.interval.ms 100

, old repartition records will no longer be deleted on every commit.ms
Users can regain this coupling by explicitly configuring both and to the commit.interval.ms repartition.purge.interval.ms
same value.

Rejected Alternatives
Purging after the configured amount of time has elapsed was rejected, as it would necessitate a design that would likely have a negative exactly
performance or correctness impact.

http://mail-archives.apache.org/mod_mbox/kafka-dev/202112.mbox/%3CCAM%2BXDzWxzam-cPxWyOEBUKW9B8yGMXxn-6geAJAHSaCUCkT5Ng%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-13549
https://github.com/apache/kafka/pull/11610

Purging after a specified multiple of commits was rejected, as it would be tightly coupled to the value of another config parameter (commit.
), which would cause a likely unintended change to purge behavior whenever the commit interval was reconfigured, including interval.ms

implicitly when the processing.guarantee is changed.

	KIP-811: Add config repartition.purge.interval.ms to Kafka Streams

