KIP-836: Expose replication information of the cluster
metadata

® Status

® Motivation

® Public Interfaces
o Additional Classes to expose the DescribeMetadataQuorumResult API to the admin client:
© DescribeMetadataQuorum Handler in the Admin Client
© Proposed change in the DescribeQuorum Response:
© kafka-metadata-quorum.sh

® Proposed Changes

® Compatibility, Deprecation, and Migration Plan

® Rejected Alternatives
© Use Existing Fields
O Track Some Other Information

Status

Current state:"Approved"
Discussion thread: here
JIRA: KAFKA-13888

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

The Descri beQuor um API as defined in KIP-595 is intended to allow the admin client to query the status of the Kraft quorum, including information about
voter lag.

At this moment, if though it is a public API, the Descr i beQuor um API is not accessible via the admin client. Furthermore, as implemented, the API
response reports the state of the voters in terms of their LogEndOf f set s. While useful, this information by itself is not an accurate measure of voter lag. T
his information gives us some hint about what the voters' state but it is not a complete check as there is no good way to define an upper bound on how
much lag in the LogEndCf f set could be problematic. The divergence in this value is dependent upon the metadata load on the cluster at the time of
measurement.

This KIP proposes making Descr i beQuor um API accessible via the admin client and augmenting the Descr i beQuor umAPI response with more
information to be able to ascertain the liveness and lag of the voters in the quorum more accurately.

Public Interfaces

Additional Classes to expose the DescribeMetadataQuorumResult API to the admin client:

public class DescribeMet adat aQuorunResul t {
private final KafkaFuture<Quorum nfo> quorumni nfo;

Descri beMet adat aQuor unResul t (Kaf kaFut ur e<Quor um nf o> quorum nfo) {
t hi s. quorum nfo = quoruni nfo;

}

/**

* Returns a future containing the Quorumnl nfo

*/

publ i c Kaf kaFut ur e<Quor um nf o> quorum nfo() {
return quorum nf o;

}

public class Quorum nfo {
private final Integer |eaderld;

https://lists.apache.org/thread/p1c39mb1ycz558ohb3nmq44w8hfyt3x8
https://issues.apache.org/jira/browse/KAFKA-13888
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum#KIP595:ARaftProtocolfortheMetadataQuorum-DescribeQuorum

private final List<ReplicaState> voters;
private final List<ReplicaState> observers;

Quorum nfo(lnteger |eaderld, List<ReplicaState> voters,
this.leaderld = | eaderld;
this.voters = voters;
this.observers = observers;

}

public Integer leaderld() {
return | eaderld;

}

public List<ReplicaState> voters() {
return voters;

}

public List<ReplicaState> observers() {
return observers;

Li st <Repl i caSt at e> observers) {

}
@verride
public bool ean equal s(Object o) {
if (this == 0) return true;
if (o ==null || getCass() !'= o.getC ass()) return false;
Quorum nfo that = (Quorum nfo) o;
return | eaderld. equal s(that. | eaderld)
&& voters. equal s(that.voters)
&& observers. equal s(that. observers);
}
@verride

public int hashCode() {
return Cbjects. hash(l eaderld, voters, observers);

}

@verride
public String toString() {
return "Quorum nfo(" +
"l eaderld=" + |eaderld +
", voters=" + voters +
", observers=" + observers +
DR
}

public static class ReplicaState {
private final int replicald;
private final |ong | ogendOffset;
private final Optional Long |astFetchTi nestanp;
private final Optional Long | astCaught UpTi nest anp;

ReplicaState() {

this(0, 0, OptionalLong.enpty(), Optional Long.enpty());

}

Repl i caStat e(
int replicald,
I ong | ogEndCr f set,
Opti onal Long | ast Fet chTi mest anp,
Opti onal Long | ast Caught UpTi nest anp

) |

this.replicald = replicald;

this.logEndOf fset = | ogEndOf f set ;

this.lastFetchTi nestanp = | ast Fet chTi nest anp;

this. |l ast Caught UpTi mestanp = | ast Caught UpTi nest anp;
}
/*-k

* Return the ID for this replica.
* @eturn The ID for this replica
*/

public int replicald() {
return replicald;

}

/**
* Return the | ogEndCffset known by the | eader for this replica.
* @eturn The | ogEndOffset for this replica
*/
public long | ogEndO fset () {
return | ogEndO f set ;
}

/**
* Return the lastFetchTinme in nmilliseconds for this replica.
* @eturn The value of the lastFetchTine if known, enpty otherw se
*/
public Optional Long | astFetchTi nestanmp() {
return | ast Fet chTi nest anp;

}

/**
* Return the |astCaughtUpTime in nmilliseconds for this replica.
* @eturn The value of the | astCaughtUpTine if known, enpty otherw se
*/
public Optional Long | ast Caught UpTi nestanp() {
return | ast Caught UpTi nest anp;

}
@verride
public bool ean equal s(Object o) {
if (this == 0) return true;
if (o ==null || getdass() != o.getC ass()) return false;
ReplicaState that = (ReplicaState) o;
return replicald == that.replicald
&& | ogENdCf f set == that.| ogeEndCf f set
&& | ast Fet chTi mest anp. equal s(t hat . | ast Fet chTi nest anp)
&& | ast Caught UpTi nest anp. equal s(t hat .| ast Caught UpTi nest anp) ;
}
@verride

public int hashCode() {
return Cbjects. hash(replicald, |ogEndOfset, |astFetchTinestanp, |astCaughtUpTi nestanp);
}

@verride
public String toString() {
return "ReplicaState(" +
"replicald=" + replicald +
", logEndOf fset=" + | ogEndCf fset +
", lastFetchTi nestanp=" + | ast FetchTi mestanp +
", last Caught UpTi nest anp=" + | ast Caught UpTi nestanp +
D

public class DescribeMet adat aQuor unOpti ons extends Abstract Opti ons<Descri beMet adat aQuor unDpti ons> {

}

DescribeMetadataQuorum Handler in the Admin Client

/**
* Describes the state of the netadata quorum
* <p>
* This is a convenience nethod for {@ink #descri beMet adat aQuor um(Descri beMet adat aQuorunOptions)} with
default options.
* See the overload for nore details.
*
* @eturn the {@ink DescribeMetadat aQuorunResult} containing the result
*/
default Descri beMet adat aQuorunResult descri beMet adat aQuorun() {
return descri beMet adat aQuor un(new Descri beMet adat aQuor umOpti ons());
}

* Describes the state of the netadata quorum

* <p>

* The followi ng exceptions can be anticipated when calling {@ode get()} on the futures obtained from
* the returned { @ode Descri beMet adat aQuor unResul t}:

*

* {@ink org. apache. kaf ka. cormon. errors. O ust er Aut hori zat i onExcepti on}

* If the authenticated user didn't have { @ode DESCRI BE} access to the cluster.

* {@ink org. apache. kaf ka. conmon. errors. Ti neout Except i on}

* If the request tinmed out before the controller could list the cluster links.

* <ful>

* @aramoptions The {@ink DescribeMetadat aQuorunOpti ons} to use when describing the quorum
* @eturn the {@ink DescribeMetadat aQuorunResult} containing the result

*/
Descri beMet adat aQuor unResul t descri beMet adat aQuor un(Descri beMet adat aQuor unOpti ons options);

Proposed change in the Descri beQuor umResponse:

"api Key": 55,

"type": "response",
"name": "DescribeQuorunResponse",
"val i dVversions": "0-1",
"flexi bl eVersions": "0+",
"fields": [
{ "name": "ErrorCode", "type": "intl6", "versions": "0+",
"about": "The top level error code."},
{ "name": "Topics", "type": "[] TopicData",
"versions": "0+", "fields": [
{ "nanme": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNanme",
"about": "The topic nane." },
{ "nanme": "Partitions", "type": "[]PartitionData",
"versions": "O0+", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "O0+",
"about": "The partition index." },
{ "name": "ErrorCode", "type": "int16", "versions": "0+"},
{ "name": "Leaderld", "type": "int32", "versions": "0+", "entityType": "brokerld",
"about": "The ID of the current leader or -1 if the |eader is unknown. "},
{ "name": "LeaderEpoch", "type": "int32", "versions": "0+",
"about": "The | atest known | eader epoch"},
{ "name": "Hi ghWatermark", "type": "int64", "versions": "O0+"},
{ "name": "CurrentVoters", "type": "[]ReplicaState", "versions": "O0+" },
{ "name": "Cbservers", "type": "[]ReplicaState", "versions": "0+" }
1}
1},
"comonStructs": [
{ "name": "ReplicaState", "versions": "O0+", "fields": [
{ "nanme": "Replicald", "type": "int32", "versions": "O0+", "entityType": "brokerld" },
{ "name": "LogEndOffset", "type": "int64", "versions": "0+",
"about": "The last known log end offset of the follower or -1 if it is unknown"},
{ "nane": "LastFetchTi mestanp", "type": "int64", "versions": "1+", "ignorable": true, "default": -1,
"about": "The |ast known | eader wall clock time time when a follower fetched fromthe |eader. This is
reported as -1 both for the current leader or if it is unknown for a voter"},
{ "nanme": "Last Caught UpTi nestanp”, "type": "int64", "versions": "1+", "ignorable": true, "default": -1,
"about": "The | eader wall clock append time of the offset for which the foll ower nmade the nost recent
fetch request. This is reported as the current tine for the |l eader and -1 if unknown for a voter"}

1}
]

kafka-metadata-quorum.sh

The output from this API will also be captured in the kaf ka- net adat a- quor um sh. The output of the - - descri be repl i cati on command in the tool

as defined in KIP-595 will change as follows:

> bi n/ kaf ka- met adat a- quorum sh --describe replication

Replicald LogEndOf f set Lag Last Fet chTi nest anp Last Caught UpTi nest anp St at us

0 234134 0 t now t now Leader
1 234130 4 t2

t6 Fol | ower

2 234100 34 t3

t7 Fol | ower

3 234124 10 t4 t8

Qobserver

4 234130 4 t5

t9 Qobserver

Proposed Changes

This KIP proposes exposing the Descr i beQuor um API to the admin client and adding two new fields per replica (including voters and observers) to

the Descri beQuor umAPI response.

These fields are intended to approximate the "time-lag" between the leader and the followers in the quorum.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum#KIP595%3AARaftProtocolfortheMetadataQuorum-ToolingSupport=

1. LastFetchTimestamp
This metric will be reported for each voter. This is a good approximation of the “liveness” of the voters and can be used to detect a network
partition in the quorum.
This information is already known to the leader for all voters and only needs to be added to the response

2. LastCaughtUpTimestamp
This metric will be reported for each voter. This is akin to the metric used to track lag for replicas in ISR and it measures the approximate lag
between the leader and the replica based on the offsets requested in the fetch requests and when they were made. The metric gives a measure
of when was the last time a replica caught up to the leader. .
To compute this metric, the Replica state maintains a few bits of information about fetch requests as they are received. Some of this information is
not tracked by the Raft layer but it can be easily added in. The cost to track this information is minimal and it only requires some additional
bookkeeping during pre-existing processing for a fetch.

NOTE: Given the leader is always caught up to itself, the Last Caught Up Time for the leader will be the leader's wall clock time when it
responded to the Descr i beQuor umrequest.

Compatibility, Deprecation, and Migration Plan

The API response is versioned and the newly added fields will bump the message version on the response. This should handle any issues around
compatibility.

Rejected Alternatives

Use Existing Fields
An alternative here was to not add in this information and use existing information available in the response to compute voter lag. As discussed in the

motivation section, the only information available in the response at the moment is the offset, which does not allow for a very reliable mechanism to
ascertain voter lag.

Track Some Other Information

Another possibility here is to add information which allows us to tell the voter lag more accurately. An argument can be made against the accuracy of the
lag as measured by the additional fields proposed in this KIP. A more complete view of the voters would be to add in Replica Time/Offset Information

	KIP-836: Expose replication information of the cluster metadata

