
KIP-837: Allow MultiCasting a Result Record.

Status
Motivation
Public Interfaces
Proposed Changes

Example Usage
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
Test Plan

Status
Current state: "Adopted"

Discussion thread:

JIRA: KAFKA-13602

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Lot of times, in Kafka Streams users want to send a record to more than one partition on the sink topic. Currently, if a user wants to replicate a message
into N partitions, the only way of doing that is to replicate the message N times and then plug-in a new custom partitioner to write the message N times into
N different partitions. To give a more concrete example, let's say there's a sink topic with 10 partitions and a user wants to send records only to even
numbered partitions.

In today's world, this is how the user can do the same:

final int numPartitions = 10;

final KStream<String, String> inputStream = builder.stream("input-topic", Consumed.with(Serdes.String(), Serdes.
String()));

for (int i = 0; i < numPartitions; i += 2) {
 final int evenNumberedPartition = i;
 inputStream.to("output-topic", Produced.with(Serdes.String(), Serdes.String(), (topic, key, val,
numPartitions) -> evenNumberedPartition));
}

As can be seen, there's no implicit way of sending the records to multiple partitions. This KIP aims to make this process simpler in Kafka Streams. As a
side note, this KIP also adds a provision to drop records using a custom partitioner.

Public Interfaces
The StreamPartitioner method would have a new method added called and the current method would be marked as partitions() partition()
deprecated. The method would be marked as default within which it would invoke method and construct a singleton set partitions() partition()
out of it. Here's how the interface would look like now:

https://issues.apache.org/jira/browse/KAFKA-13602

import java.util.Set;
import java.util.Collections;

 public interface StreamPartitioner<K, V> {

 /**
 * Determine the partition number for a record with the given key and value and the current number of
partitions.
 *
 * @param topic the topic name this record is sent to
 * @param key the key of the record
 * @param value the value of the record
 * @param numPartitions the total number of partitions
 * @return an integer between 0 and {@code numPartitions-1}, or {@code null} if the default partitioning
logic should be used
 */
 @Deprecated
 Integer partition(String topic, K key, V value, int numPartitions);

 /**
 * Determine the partition numbers to which a record, with the given key and value and the current number
 * of partitions, should be multi-casted to.
 * @param topic the topic name this record is sent to
 * @param key the key of the record
 * @param value the value of the record
 * @param numPartitions the total number of partitions
 * @return an Optional of Set of integers between 0 and {@code numPartitions-1},
 * Empty optional means use default partitioner
 * Optional of an empty set means the record won't be sent to any partitions i.e dropped.
 * Optional of Set of integers means the partitions to which the record should be sent to.
 * */
 default Optional<Set<Integer>> partitions(String topic, K key, V value, int numPartitions) {
 Integer partition = partition(topic, key, value, numPartitions);
 return partition == null ? Optional.empty() : Optional.of(Collections.singleton(partition(topic, key,
value, numPartitions)));
 }

}

The return type is a Set so that for cases of a faulty implementation of method which might return same partition number multiple times, we partitions
would still record it only once.

Proposed Changes
RecordCollector and it's implementation RecordCollectorImpl has the method which accepts a StreamPartitioner object and pushes it to the
partitions returned by the partition method. This is the core piece of logic which would allow multi/broadcasting records. Here are the high level
changes. Note that when the method return an empty set meaning we won't send the record to any partition, we would also be partitions()
updating the droppedRecordsSensor.

@Override
 public <K, V> void send(final String topic,
 final K key,
 final V value,
 final Headers headers,
 final Long timestamp,
 final Serializer<K> keySerializer,
 final Serializer<V> valueSerializer,
 final StreamPartitioner<? super K, ? super V> partitioner) {

 if (partitioner != null) {

 // Existing logic to fetch partitions

 // Changes to be made due to the KIP
 if (partitions.size() > 0) {
 final Optional<Set<Integer>> maybeMulticastPartitions = partitioner.partitions(topic,
key, value, partitions.size());
 if (!maybeMulticastPartitions.isPresent()) {
 // New change. Use default partitioner
 send(topic, key, value, headers, null, timestamp, keySerializer, valueSerializer,
processorNodeId, context);
 } else {
 Set<Integer> multicastPartitions = maybeMulticastPartitions.get();
 if (multicastPartitions.isEmpty()) {
 // If a record is not to be sent to any partition, mark it as dropped.
 log.info("Not sending the record to any partition");
 droppedRecordsSensor.record();
 } else {
 for (final int multicastPartition: multicastPartitions) {
 send(topic, key, value, headers, multicastPartition, timestamp,
keySerializer, valueSerializer, processorNodeId, context);
 }
 }
 }
 } else {
 throw new StreamsException("Could not get partition information for topic " + topic + "
for task " + taskId +
 ". This can happen if the topic does not exist.");
 }
 } else {
 send(topic, key, value, headers, null, timestamp, keySerializer, valueSerializer,
processorNodeId, context);
 }
 }

StreamPartitioner is also used in FK-join and Interactive queries. For FK-join and IQ, the invocation of would be replaced by partition() part
 and a runtime check would be added to ensure that the returned set is singleton. itions()

Example Usage

Continuing the example from the motivation section, with the new interface, here's how users can send to even number partitions:

// Define a partitioner class which sends to even numbered partitions

public static class EvenPartitioner<K, V> implements StreamPartitioner<K, V> {

 @Override
 public Integer partition(String topic, K key, V value, int numPartitions) {
 return null;
 }

 @Override
 public Set<Integer> partitions(String topic, K key, V value, int numPartitions) {
 final Set<Integer> partitions = new HashSet<>();
 for (int i = 0; i < numPartitions; i += 2) {
 partitions.add(i);
 }
 return partitions;
 }
 }

// Broadcasting
public static class BroadcastingPartitioner<K, V> implements StreamPartitioner<K, V> {

 @Override
 public Integer partition(String topic, K key, V value, int numPartitions) {
 return null;
 }

 @Override
 public Set<Integer> partitions(String topic, K key, V value, int numPartitions) {
 return IntStream.range(0, numPartitions).boxed().collect(Collectors.toSet());
 }
 }

// Don't send to any partitions
public static class DroppingPartitioner<K, V> implements StreamPartitioner<K, V> {

 @Override
 public Integer partition(String topic, K key, V value, int numPartitions) {
 return null;
 }

 @Override
 public Set<Integer> partitions(String topic, K key, V value, int numPartitions) {
 return Collections.emptySet();
 }
 }

// Build Stream.
final KStream<String, String> inputStream = builder.stream("input-topic", Consumed.with(Serdes.String(), Serdes.
String()));

// Send to even numbered partitions
inputStream.to("output-topic", Produced.with(Serdes.String(), Serdes.String(), (topic, key, val, numPartitions)
-> new EvenPartitioner()));
// Broadcast
inputStream.to("output-topic", Produced.with(Serdes.String(), Serdes.String(), (topic, key, val, numPartitions)
-> new BroadcastingPartitioner()));
// Send to even numbered partitions
inputStream.to("output-topic", Produced.with(Serdes.String(), Serdes.String(), (topic, key, val, numPartitions)
-> new DroppingPartitioner()));
}

This way users just need to define the partitioner and the internal routing mechanism would take care of sending the records to relevant or no partitions.

Compatibility, Deprecation, and Migration Plan

This KIP deprecates method in . Here is what we would be doing as part of the same:partition() StreamPartitioner

StreamPartitioner is also used in FK-join and IQ. The invocation of would be replaced by and a runtime check partition() partitions()
would be added to ensure that the returned set is singleton.
Adding sufficient logging

Rejected Alternatives
The first 3 alternatives were rejected as they focussed only broadcasting to all partitions which seemed restrictive.

extend to() / addSink() with a "broadcast" option/config in KafkaStreams.
add toAllPartitions() / addBroadcastSink() methods in KafkaStreams.
allow StreamPartitioner to return `-1` for "all partitions".
Adding a separate class to handle multi casting. This was rejected in favour of enhancing the current interface.StreamPartitioner

Test Plan
Add new tests(unit/integration) similar to the tests for the newly introduced method.partition partitions
Add tests to fail when a non singleton set is returned for FK joins and IQ when querying.

	KIP-837: Allow MultiCasting a Result Record.

