
KIP-842: Add richer group offset reset mechanisms

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discuss

JIRA: here

Pull Request: here

Discussing thread: here

Vote thread: here

Motivation
When the server expands partitions for a topic, the producer firstly perceives the expansion, and some data is written in the newly expanded partitions. But
the consumer group perceives the expansion later, after the rebalance is completed, the newly expanded partitions will be consumed from the latest if
"auto.offset.reset" is set to "latest". Within a period of time, the data of the newly expanded partitions is skipped and lost by the consumer. But for a group
that is consuming, it does not want to skip the data. Therefore, we hope to provide some richer offset reset mechanisms to solve this problem, and
secondly, to deal with the problem of out of range more flexibly.

For this case of data loss, I did a test. you can see the linked for details.JIRA

Public Interfaces
Add an additional enum class named InitialOffsetResetStrategy to represent strategies for group startup with no initial offset.

InitialOffsetResetStrategy.java

package org.apache.kafka.clients.consumer;

import java.util.Locale;

public enum InitialOffsetResetStrategy {
 NONE, LATEST_ON_START, EARLIEST_ON_START;

 @Override
 public String toString() {
 return super.toString().toLowerCase(Locale.ROOT);
 }
}

Add an additional enum class named Invalid to represent strategies for handling out-of-range.OffsetResetStrategy

https://issues.apache.org/jira/projects/KAFKA/issues/KAFKA-12478
https://github.com/apache/kafka/pull/10726
https://lists.apache.org/thread/dhy4xjb1d5olbn5njho54df4n5om29fz
https://lists.apache.org/thread/4x0w1gk9jjj811gmk2zbd0bw8p2b32bf
https://issues.apache.org/jira/projects/KAFKA/issues/KAFKA-12478?filter=allopenissues

1.

2.

3.

InvalidOffsetResetStrategy.java

package org.apache.kafka.clients.consumer;

import java.util.Locale;

public enum InvalidOffsetResetStrategy {
 NONE, NEAREST;

 @Override
 public String toString() {
 return super.toString().toLowerCase(Locale.ROOT);
 }
}

Then add two new consumer config named " .initial.offset" and "auto.offset.reset.on.invalid.offset"auto.offset.reset.on

ConsumerConfig

public static final String INVALID_OFFSET_RESET_CONFIG = "auto.offset.reset.on.invalid.offset";
private static final String INVALID_OFFSET_RESET_CONFIG_DOC = "If not NONE, when out of range errors
will reset the consumer's offset according to strategy. For example of NEAREST, to the earliest end of
the broker range if it was under the range, or to the latest end of the broker range if it was over the
range. If set NONE, fall back to auto.offset.reset";
public static final String INITIAL_OFFSET_RESET_CONFIG = "auto.offset.reset.on.initial.offset";
private static final String INITIAL_OFFSET_RESET_CONFIG_DOC = "If not NONE, when group startup for the
first time with no initial offset, it will reset to latest or earliest by LATEST_ON_START and
EARLIEST_ON_START, If set NONE, fall back to auto.offset.reset";

CONFIG = new ConfigDef().define(INVALID_OFFSET_RESET_CONFIG,
 Type.STRING,
 InvalidOffsetResetStrategy.NONE.
toString(),
 in(Utils.enumOptions(InvalidOffsetResetStrategy.class)),
 Importance.MEDIUM,
 INVALID_OFFSET_RESET_CONFIG_DOC)
 .define(INITIAL_OFFSET_RESET_CONFIG,
 Type.STRING,
 InitialOffsetResetStrategy.NONE.toString(),
 in(Utils.enumOptions(InitialOffsetResetStrategy.class)),
 Importance.MEDIUM,
 INITIAL_OFFSET_RESET_CONFIG_DOC)

Proposed Changes
In addition to the "earliest", "latest", and "none" provided by the existing "auto.offset.reset", it also provides more abundant reset semantics, such
as "latest_on_start" (application startup is reset to latest, and an exception is thrown if out of range occurs), "earliest_on_start" (application startup
is reset to earliest, and an exception is thrown if out of range occurs), "nearest"(determined by "auto.offset.reset" when the program starts, and
choose earliest or latest according to the distance between the current offset and log start offset and log end offset when out of range occurs).
" .initial.offset": Indicates the strategy used to initialize the offset. The default value is the parameter configured by "auto.auto.offset.reset.on.no
offset.reset". If so, the strategy for initializing the offset remains unchanged from the previous behavior, ensuring compatibility. If the parameter is
configured with "latest_on_start" or "earliest_on_start", then the offset will be reset according to the configured semantics when initializing the
offset. In this way, the problem of data loss during partition expansion can be solved: configure " .initial.offset" to auto.offset.reset.on.no
"latest_on_start", and configure "auto.offset.reset" to earliest.
"auto.offset.reset.on.invalid.offset": Indicates that the offset is illegal or out of range occurs. The default value is the parameter configured by "auto.
offset.reset". If so, the processing of out of range is the same as before to ensure compatibility. If "nearest" is configured, then the semantic logic
corresponding to "nearest" is used only for the case of out of range.

The semantics of "auto.offset.reset" remain unchanged. In order to describe in more detail what these parameters mean, and how they behave in various
situations. We decide two categories where need reset offset.

" .initial.offset" (When the group starts consumption for the first time, the offset needs to be initialized)auto.offset.reset.on.no :

initial offset reset strategy proposed reset behavior when set initial offset

http://auto.offset.reset.on.no
http://auto.offset.reset.on.no
http://auto.offset.reset.on.no
http://auto.offset.reset.on.no

none fall back to *auto.offset.reset*:

if none, throw exception
if earliest, reset to earliest
if latest, reset to latest

earliest_on_start reset to earliest

latest_on_start reset to latest

"auto.offset.reset.on.invalid.offset" (When out of range or other abnormal offset inconsistencies occur during consumption):

invalid offset reset strategy proposed reset behavior when trigger out of range

none fall back to *auto.offset.reset*:

if none, throw exception
if earliest, reset to earliest
if latest, reset to latest

nearest to the earliest if it was under the range, or to the latest if it was over the range.

Compatibility, Deprecation, and Migration Plan
Existing or old behaviors have no impact. It only provide some rich mechanisms to use, users can choose to use according to their own needs, the existing
behaviors will be retained and will not be changed.

Rejected Alternatives
For the problem of losing data due to expand partitions, it is not necessarily set "auto.offset.reset=earliest" for a huge data flow topic when starts up, this
will make the group consume historical data from the broker crazily, which will affect the performance of brokers to a certain extent. Therefore, it is
necessary to consume these new partitions from the earliest separately, which is set:" .initial.offset"="latest_on_start", "auto.offset.auto.offset.reset.on.no
reset"="earliest".

It has been implemented according to Proposed Changes, see pr: https://github.com/apache/kafka/pull/10726

http://auto.offset.reset.on.no
https://github.com/apache/kafka/pull/10726

	KIP-842: Add richer group offset reset mechanisms

