
KIP-846: Source/sink node metrics for Consumed
/Produced throughput in Streams

Status
Motivation
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
With the metrics available today it is possible for users of Kafka Streams to derive the throughput of their applications at the subtopology level, consumed
but the same is not true for the throughput. The consumer client currently reports a cumulative sum metric at the topic level, ie the produced -total
metrics which reports both the number of records and the bytes consumed. These are tagged with the topic name and the (consumer) client id, which is
sufficient for computing the bytes/records consumed per subtopology by aggregating over all clients in the Stream application. This computation relies on
the fact that Kafka Streams topologies can only consume from a given topic at most . Unfortunately there is no such guarantee on the other end, and once
applications can have one or more subtopologies producing to any given output topic.

To fill in this gap and give end users a way to compute the production rate of each subtopology, this KIP proposes two new metrics for the throughput at its
sink nodes.

Furthermore, we propose to also add the corresponding metrics at the source nodes in order to give a fully granular view of the consumed throughput.
Even though one can derive a topic-level view of this using the existing client-level metrics, we feel it's worth adding the more granular metrics -consumed
alongside the metrics for two main reasons: (a) to provide an equally fine-grained metrics scope, and (b) to simplify the user experience such -produced
that the same processing/parsing logic can be applied to handle the throughput metrics at the sink and source nodes. It's worth noting that a third benefit to
adding the corresponding metrics lies in enabling users to do more future-proof handling that does not rely on any assumptions about the limits consumed
of consumer groups such as the 1:1 mapping of source topic to consumer client.

Public Interfaces
The following metrics would be added:

bytes-consumed-total
records-consumed-total
bytes-produced-total
records-produced-total

These will be exposed on the (newly added metrics scope by this KIP) with the following tags: topic level

type = stream-processor-node-metrics
thread-id=[threadId]
task-id=[taskId]
processor-node-id=[processorNodeId]
topic=[topic-name]

The and metrics will be reported at the and respectively, at the recording level -consumed -produced source sink nodes INFO.

Proposed Changes
Pretty much everything outside of the metric names, recording levels, and tags is an implementation detail so this document won't go much farther here.
But just to assuage any concerns about how these metrics will be computed, note that the serialization into raw bytes occurs within Streams handingbefore
them off to the embedded Producer client. And so we should have everything we need to record both the number of records and the size in bytes while we
are still within Streams code and have the taskId/subtopology number available.

https://lists.apache.org/thread/3yholl2ncc6k1f13lr5y0xckd7wyyy1m
https://issues.apache.org/jira/browse/KAFKA-13945

1.

Compatibility, Deprecation, and Migration Plan
N/A – this KIP is only adding new metrics and should not present any compatibility problems.

Test Plan
Since we're just adding metrics we should have sufficient coverage with basic unit and integration tests. We will also monitor for performance regressions
in our benchmarks that sink to output topics just in case this incurs some unexpected overhead and would be better suited at the level. See #2 DEBUG
under Rejected Alternatives for more on this.

Rejected Alternatives
Including the corresponding metrics alongside the metrics, as is often done for Streams metrics. For one thing reporting the -rate -total
cumulative sums should be sufficient for any monitoring service to compute the rate if desired, and furthermore allows that service to have full
control over how this rate is defined and computed over what window of time.

	KIP-846: Source/sink node metrics for Consumed/Produced throughput in Streams

