
KIP-858: Handle JBOD broker disk failure in KRaft

Status
Motivation
Public interfaces

Command line tools
meta.properties
Reserved UUIDs
Metadata records
RPC requests

Proposed changes
Metrics
Configuration
Storage format command

Example
Brokers

Broker lifecycle management
Metadata caching
Handling log directory failures
Replica management
Intra-broker replica movement

Controller
Replica placement
Handling log directory failures
Handling replica assignments
Broker registration

Compatibility, Deprecation, and Migration Plan
Migrating a cluster in KRaft without JBOD
Migrating a cluster in ZK mode running with JBOD
Replica management
Storage formatting

Test plan
Future work
Rejected alternatives
Footnotes

Status
: AcceptedCurrent state

: Discussion thread https://lists.apache.org/thread/8dqvfhzcyy87zyy12837pxx9lgsdhvft

: Vote thread https://lists.apache.org/thread/4pqjp8r7n94lnymv3xc689mfw33lz3mj

: JIRA

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Support for multiple log directories per broker, aka JBOD () came in and since then JBOD has been an important feature in Just a Bunch Of Disks KIP-112
Kafka, allowing it to run on large deployments with multiple storage devices per broker.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/8dqvfhzcyy87zyy12837pxx9lgsdhvft
https://lists.apache.org/thread/4pqjp8r7n94lnymv3xc689mfw33lz3mj
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-112%3A+Handle+disk+failure+for+JBOD

To ensure availability, when a partition leader fails, the controller should elect a new leader from one of the other in-sync replicas. But the controller does
not check whether each leader is correctly performing its duties, instead the controller simply assumes that each broker is working correctly if it is still an
active member of the cluster. In KRaft, cluster membership is based on timely heartbeat requests sent by each broker to the active controller. In
ZooKeeper, cluster membership is based on an ephemeral zNode under /brokers/ids.

In KRaft mode, when a single log directory fails, the broker will be unable to be either a leader or a follower for any partitions in that log directory, but the
controller will have no signal that it needs to update leadership and ISR for the replicas in that log directory, as the broker will continue to send heartbeat
requests. 1

In ZooKeeper mode when a log directory fails, the broker sends a notification to the controller which then sends a full request to the LeaderAndIsr
broker, listing all the partitions for all log directories for that broker. The controller relies on per-partition error results from the broker to update leadership
and ISR for the replicas in the failed log directory. Without this notification, the partitions with leadership on that log directory will not get a new leader
assigned and would remain unavailable.

Support for KRaft in JBOD, was proposed and accepted back in — with a new RPC from the broker to the controller indicating the affected topic KIP-589
was never mpartitions in a failed log directory — but the implementation erged and concerns were raised with possible large requests from the broker to

.the controller

 was accepted, with plans to mark KRaft as production ready and deprecate ZooKeeper mode, but JBOD is still a missing feature in KRaft. This KIP-833
KIP aims to provide support for JBOD in KRaft, while avoiding any RPC having to list all the partitions in a log directory.

Public interfaces

Command line tools

The sub-command in the the tool already supports formatting more than one log directory — by expecting a list of format kafka-storage.sh
configured — and "formatting" only the ones that need so. A new property will be included in — — which log.dirs meta.properties directory.id
will identify each log directory with a UUID. The UUID is randomly generated for each log directory.

meta.properties

A new property — — will be expected in the file in each log directory configured under The directory.id meta.properties log.dirs.
property indicates the UUID for the log directory where the file is located. If any of the files does not contain one will meta.properties directory.id
be randomly generated and the file will be updated upon Broker startup. The tool will be extended to generate this property as kafka-storage.sh
described in the previous section.

Reserved UUIDs

The following UUIDs are excluded from the random pool when generating a log directory UUID:

 – – used to identify new or unknown assignments.UUID.UNASSIGNED_DIR new Uuid(0L, 0L)
 - – used to represent unspecified offline directories.UUID.LOST_DIR new Uuid(0L, 1L)

 - – used when transitioning from a previous state where directory assignment was not available, to UUID.MIGRATING_DIR new Uuid(0L, 2L)
designate that some directory was previously selected to host a partition, but we're not sure which one yet.

The first 100 UUIDs, minus the three listed above are also reserved for future use.

Metadata records

 and RegisterBrokerRecord Brok will have a new field:erRegistrationChangeRecord

{ "name": "LogDirs", "type": "[]uuid", "versions": "3+", "taggedVersions": "3+", "tag": "0",
 "about": "Log directories configured in this broker which are available." }

 and will both have a new fieldPartitionRecord PartitionChangeRecord Directories

{ "name": "Directories", "type": "[]uuid", "versions": "1+",
 "about": "The log directory hosting each replica, sorted in the same exact order as the Replicas field."}

Although not explicitly specified in the schema, the default value for is , as that's the default Directory Uuid.UNASSIGNED_DIR (Uuid.ZERO) default
 for UUID types.value 2 A directory assignment to conveys that the log directory is not yet known, the hosting Broker will Uuid.UNASSIGNED_DIR

eventually determine the hosting log directory and use to update this the assignment.AssignReplicasToDirs

RPC requests

BrokerRegistrationRequest will include the following new field:

{ "name": "LogDirs", "type": "[]uuid", "versions": "2+",
 "about": "Log directories configured in this broker which are available." }

BrokerHeartbeatRequest will include the following new field:

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-589+Add+API+to+update+Replica+state+in+Controller
https://issues.apache.org/jira/browse/KAFKA-9837?focusedCommentId=17487226&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-17487226
https://issues.apache.org/jira/browse/KAFKA-9837?focusedCommentId=17487226&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-17487226
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-833%3A+Mark+KRaft+as+Production+Ready

{ "name": "OfflineLogDirs", "type": "[]uuid", "versions": "1+", "taggedVersions": "1+", "tag": "0",
 "about": "Log directories that failed and went offline." }

A new RPC named will be introduced with the following request and response:AssignReplicasToDirs

{
 "apiKey": <TBD>,
 "type": "request",
 "listeners": ["controller],
 "name": "AssignReplicasToDirsRequest",
 "validVersions": "0",
 "flexibleVersions": "0+",
 "fields": [
 { "name": "BrokerId", "type": "int32", "versions": "0+", "entityType": "brokerId",
 "about": "The ID of the requesting broker" },
 { "name": "BrokerEpoch", "type": "int64", "versions": "0+", "default": "-1",
 "about": "The epoch of the requesting broker" },
 { "name": "Directories", "type": "[]DirectoryData", "versions": "0+", "fields": [
 { "name": "Id", "type": "uuid", "versions": "0+", "about": "The ID of the directory" },
 { "name": "Topics", "type": "[]TopicData", "versions": "0+", "fields": [
 { "name": "TopicName", "type": "uuid", "versions": "0+",
 "about": "The name of the assigned topic" },
 { "name": "Partitions", "type": "[]PartitionData", "versions": "0+", "fields": [
 { "name": "PartitionIndex", "type": "int32", "versions": "0+",
 "about": "The partition index" }
]}
]}
]}
]
}

{
 "apiKey": <TBD>,
 "type": "response",
 "name": "AssignReplicasToDirsResponse",
 "validVersions": "0",
 "flexibleVersions": "0+",
 "fields": [
 { "name": "ThrottleTimeMs", "type": "int32", "versions": "0+",
 "about": "The duration in milliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
 { "name": "ErrorCode", "type": "int16", "versions": "0+",
 "about": "The top level response error code" },
 { "name": "Directories", "type": "[]DirectoryData", "versions": "0+", "fields": [
 { "name": "Id", "type": "uuid", "versions": "0+", "about": "The ID of the directory" },
 { "name": "Topics", "type": "[]TopicData", "versions": "0+", "fields": [
 { "name": "TopicId", "type": "uuid", "versions": "0+",
 "about": "The name of the assigned topic" },
 { "name": "Partitions", "type": "[]PartitionData", "versions": "0+", "fields": [
 { "name": "PartitionIndex", "type": "int32", "versions": "0+",
 "about": "The partition index" },
 { "name": "ErrorCode", "type": "int16", "versions": "0+",
 "about": "The partition level error code" }
]}
]}
]}
]
}

A request including an assignment to conveys that the Broker is wanting to correct a replica assignment into AssignReplicasToDirs Uuid.LOST_DIR
a offline log directory, which cannot be identified.

This request is authorized with CLUSTER_ACTION on CLUSTER.

Proposed changes

Metrics

MBean name Description

kafka.server:type=KafkaServer,
name=QueuedReplicaToDirAssi
gnments

The number of replicas hosted by the broker that are either missing a log directory assignment in the cluster
metadata or are currently found in a different log directory and are queued to be sent to the controller in a AssignRe

 request.plicasToDirs

Configuration

The following configuration option is introduced

Name Description Default Valid
Values

Priority

og.dir.l
failure.
timeout.ms

If the broker is unable to successfully communicate to the controller that some log directory has failed for
longer than this time, and there's at least one partition with leadership on that directory, the broker will fail and
shut down.

30000
(30
seconds)

[1, …] low

Storage format command

The subcommand will be updated to eformat nsure each log directory has an assigned UUID and it will persist a new property in the directory.id met
 file.a.properties The value is base64 encoded, like the cluster UUID.

The version field will stay set to 1, to allow for a downgrade after an upgrade on a non JBOD KRaft cluster.meta.properties 3 The UUIDs for each log
directory are automatically generated by the tool if there isn't one assigned already in an existing file.meta.properties

Having a persisted UUID at the root of each log directory allows the broker to identify the log directory regardless of the mount path.

Example

Given the following :server.properties

(... other non interesting properties omitted ...)
process.roles=broker

=8node.id
metadata.log.dir=/var/lib/kafka/metadata
log.dirs=/mnt/d1,/mnt/d2

The command would ./bin/kafka-storage.sh format -c /tmp/server.properties --cluster-id 41QSStLtR3qOekbX4ZlbHA
generate three files that could look like the following:meta.properties

 :/var/lib/kafka/metadata/meta.properties

#
#Thu Aug 18 15:23:07 BST 2022
node.id=8
version=1
cluster.id=41QSStLtR3qOekbX4ZlbHA
directory.id=e6umYSUsQyq7jUUzL9iXMQ

 :/mnt/d1/meta.properties
#
#Thu Aug 18 15:23:07 BST 2022
node.id=8
version=1
cluster.id=41QSStLtR3qOekbX4ZlbHA
directory.id=b4d9ExdORgaQq38CyHwWTA

 :/mnt/d2/meta.properties
#
#Thu Aug 18 15:23:07 BST 2022
node.id=8
version=1
cluster.id=41QSStLtR3qOekbX4ZlbHA
directory.id=P2aL9r4sSqqyt7bC0uierg

Each directory, including the directory that holds the cluster metadata topic — — has a different and respective value as the metadata.log.dir
directory ID.

In the example above, we can identify the following directory mapping:

 has log directory UUID /var/lib/kafka/metadata e6umYSUsQyq7jUUzL9iXMQ
 has log directory UUID /mnt/d1 b4d9ExdORgaQq38CyHwWTA
 has log directory UUID /mnt/d2 P2aL9r4sSqqyt7bC0uierg

Brokers

Broker lifecycle management

When the broker starts up and initializes , it will load the UUID for each log directory () by reading the filLogManager directory.id meta.properties
e at the root of each of them.

If there are any two log directories with the same UUID, the Broker will fail at startup
If there are any files missing , a new UUID is generated, and assigned to that directory by updating the meta.properties directory.id meta

 file..properties

http://producer.id.expiration.ms
http://node.id

1.

2.

The set of all loaded log directory UUIDs is sent along in the broker registration request to the controller as the field. LogDirs

Metadata caching

Currently, Replicas are considered offline if the hosting broker is offline. Additionally, replicas will also be considered offline if the replica references a log
directory UUID (in the new field) that is not present in the hosting Broker's latest registration under and partitionRecord.Directories LogDirs
either:

the log directory UUID is UUID.LOST_DIR
the hosting broker's registration indicates multiple online log directories. i.e. brokerRegistration.LogDirs.length > 1

If neither of the above conditions are true, we assume that there is only one log directory configured, the broker is not configured with multiple log
directories, replicas all live in the same directory and neither log directory assignments nor log directory failures shall be communicated to the Controller.

Handling log directory failures

When multiple log directories are configured, and some (but not all) of them become offline, the broker will communicate this change using the new field Of
 in the requestflineLogDirs BrokerHeartbeat — indicating the UUIDs of the new offline log directories. The UUIDs for the accumulated failed log

directories are included in every request until the broker restartsBrokerHeartbeat . If the Broker is configured with a single log directory, this field isn't
used, as the current behavior of the broker is to shutdown when no log directories are online.

Log directory failure notifications are queued and batched together in all future broker heartbeat requests.

If the Broker repeatedly fails to communicate a log directory failure, or a replica assignment into a failed directory, after a configurable amount of time — lo
g.dir.failure.timeout.ms — and it is the leader for any replicas in the failed log directory the broker will shutdown, as that is the only other way to
guarantee that the controller will elect a new leader for those partitions.

Replica management

When configured with multiple , as the broker catches up with metadata, and sees the partitions which it should be hosting, it will check the log.dirs
associated log directory UUID for each partition ().partitionRecord.Directories

If the partition is not assigned to a log directory (refers to Uuid.UNASSIGNED_DIR)
If the partition already exists, the broker uses the new RPC — — to notify the controller to change the AssignReplicasToDirs
metadata assignment to the actual log directory.
If the partition does not exist, the broker selects a log directory and uses the new RPC — — to notify the AssignReplicasToDirs
controller to create the metadata assignment to the actual log directory.

If the partition is assigned to an online log directory
If the partition does not exist it is created in the indicated log directory.
If the partition already exists in the indicated log directory and no future replica exists, then no action is taken.
If the partition already exists in the indicated log directory, and there is a future replica in another log directory, then the broker starts the
process to replicate the current replica to the future replica.
If the partition already exists in another online log directory and is a future replica in the log directory indicated by the metadata, the
broker will replace the current replica with the future replica after making sure that the future replica is fully caught up with the current
replica.
If the partition already exists in another online log directory, the broker uses the new RPC — — to the AssignReplicasToDirs
controller to change the metadata assignment to the actual log directory. The partition might have been moved to a different log directory
whilst the broker was offline.

If the partition is assigned to an unknown log directory or refers to Uuid.LOST_DIR
If there are offline log directories, no action is taken — the assignment refers to a a log directory which may be offline, we don't want to
fill the remaining online log directories with replicas that existed in the offline ones.
If there are no offline directories, the broker selects a log directory and uses the new RPC — — to notify the AssignReplicasToDirs
controller to create the metadata assignment to the actual log directory.

If instead, a single entry is configured under or , then the RPC is only sent to correct assignments to log.dirs log.dir AssignReplicasToDirs UUID
, as described above..LOST_DIR

If the broker is configured with multiple log directories it remains FENCED until it can verify that all partitions are assigned to the correct log directories in
the cluster metadata. This excludes the log directory that hosts the cluster metadata topic, if it is configured separately to a different path — using metadat

.a.log.dir

Assignments to be sent via are queued and batched together, handled by a log directory event manager that also handles log AssignReplicasToDirs
directory failure notifications.

Intra-broker replica movement

Support for replica movement between directories was introduced in . This functionality is maintained, but altered slightly so that the controller KIP-113
remains correctly informed of the log directory for any moving replica.

The existing AlterReplicaLogDirs RPC is sent directly to the broker in question, which starts moving the
replicas using ReplicaAlterLogDirsThread – this remains unchanged. But when the future replica first catches up
with the main replica, instead of immediately promoting the future replica, the broker will:

Asynchronously communicate the log directory change to the controller using the new RPC – AssignRepli
.casToDirs

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories

2.

1.

2.

Keep the going. The future replica is still the future replica, and it ReplicaAlterLogDirsThread
continues to copy from the main replica – which still in the original log directory – as new records are
appended.

Once the broker receives confirmation of the metadata change – indicated by a successful response to Assig
 – then it will:nReplicasToDirs

Block appends to the main (old) replica and waits for the future replica to fully catch up once again.
Makes the switch, promoting the future replica to main replica and cleaning up the old one.

By delaying the metadata change until the future replica has caught up we minimize the chance of a log
directory failure happening with an incorrect replica to log directory assignment in the metadata.

The diagram below illustrates the sequence of steps involved in moving a replica between log directories.

In the diagram above, notice that if fails after the RPC is sent, but before the future replica is promoted, then the dir1 AssignReplicasToDirs
controller will not know to update leadership and ISR for the partition. If the destination directory has failed, it won't be possible to promote the future
replica, and the Broker needs to revert the assignment (cancelled locally if still queued). If the source directory has failed, then the future replica might not
catch up, and the Controller might not update leadership and ISR for the partition. In this exceptional case, the broker issues a AssignReplicasToDirs
RPC to the Controller to assignment the replica to - this lets the Controller know that it needs to update leadership and ISR for this UUID.LOST_DIR
partition too.

Controller

Replica placement

For any new partitions, the active controller will use as the initial value for log directory UUID for each replica – this is the default Uuid.UNASSIGNED_DIR
(empty) value for the tagged field. Each broker with multiple hosting replicas then assigns a log directory UUID and communicates it back to the log.dirs

 so that cluster metadata can be updated with the log directory assignment. Brokers that active controller using the new RPC AssignReplicasToDirs
are configured with a single log directory to not send this RPC.

Handling log directory failures

When a controller receives a BrokerHeartbeat request from a broker that indicates any UUIDs under the new field, it will:OfflineLogDirs

Persist a record, with the new list of online log directories.BrokerRegistrationChange
Update the Leader and ISR for all the replicas assigned to the failed log directories, persisting , in a similar way to PartitionChangeRecords
how leadership and ISR is updated when a broker becomes fenced, unregistered or shuts down.

If the any of the listed log directory UUIDs is not a registered log directory then the call fails with error 57 — .LOG_DIR_NOT_FOUND

Handling replica assignments

The controller accepts the RPC and persists the assignment into metadata records.AssignReplicasToDirs

If the indicated log directory UUID is not one of the Broker's online log directories, then the replica is considered offline and the leader and ISR is updated
accordingly, same as when the indicates a new offline log directory.BrokerHeartbeat

Broker registration

Upon a broker registration request the controller will persist the broker registration as cluster metadata including the online log directory list and offline log
directories flag for that broker. The controller may receive a new list of online directories and offline log directories flag — different from what was
previously persisted in the cluster metadata for the requesting broker.

If there are no indicated online log directory UUIDs the request is invalid and the controller replies with an error 42 – .INVALID_REQUEST
If multiple log directories are registered the broker will remain fenced until the controller learns of all the partition to log directory placements in
that broker - i.e. no remaining replicas assigned to . The broker will indicate these using the AssignReplicasToDirs RPC.Uuid.UNASSIGNED_DIR

The broker remains fenced by not wanting to unfence itself in heartbeat requests until the number of mismatching replica to log directory
assignments is zero. This number is represented by the new metric .QueuedReplicaToDirAssignments

If multiple log directories are registered and some of them are new (not present in previous registration) then these log directories are assumed to
be empty. If they are not, the broker will use the RPC to correct assignment and choose not to become UNFENCED AssignReplicasToDirs
before the metadata is correct.

Brokers whose registration indicates that multiple log directories are configured remain FENCED until all log directory assignments for that broker are
learnt by the active controller and persisted into metadata.

Compatibility, Deprecation, and Migration Plan
The metadata.version will be bumped to gate changes to the RPCs and metadata records.

Migrating a cluster in KRaft without JBOD

The cluster needs to be upgraded before configuring multiple entries in . After the upgrade, the feature flag needs to be log.dirs metadata.version
upgraded using . Then the brokers can be reconfigured with multiple entries in .kafka-features.sh log.dirs

Upon being reconfigured with multiple log directories, brokers will update and generate in as necessary to reflect the directory.id meta.properties
new log directories. Brokers will then register the log directories with the controller via and use to BrokerRegistration AssignReplicasToDirs
create the partition-logdirectory assignments in the cluster metadata before becoming UNFENCED.

Migrating a cluster in ZK mode running with JBOD

. That migration is extended in the following way:Migration into KRaft mode is addressed in KIP-866

As per , a separate Controller quorum is setup first, and only then the existing brokers are reconfigured and upgraded.KIP-866
When configured for the migration and while still in ZK mode, brokers will:

update meta.properties to generate and include directory.id;

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-866+ZooKeeper+to+KRaft+Migration
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-866+ZooKeeper+to+KRaft+Migration

send including the log directory UUIDs;BrokerRegistrationRequest
shutdown if any directory fails;
sends assignments via the RPC.AssignReplicasToDirs

During the migration, the controller:
persists log directories indicated in broker registration requests in the cluster metadata;
persists directory assignments received via the RPC.AssignReplicasToDirs

The brokers restarting into KRaft mode will want to stay fenced until their log directory assignments for all hosted partitions are persisted in the
cluster metadata.
The active controller will also ensure that any given broker stays fenced until it learns of all partition to log directory assignments in that specific
broker via the new RPC.AssignReplicasToDirs
During the migration, existing replicas are assumed and assigned to log directory until the actual log directory is learnt by Uuid.MIGRATING_DIR
the active controller from a broker running in KRaft mode.

Replica management

Existing replicas without a log directory are either:

Assumed to live in a broker that isn’t yet configured with multiple log directories, and so live in a single log directory. It is not possible to trigger a
log directory failure from a broker that has a single log directory, as the broker would simply shut down if there are no remaining online log
directories. Or
Assigned to a log directory as of yet unknown, in a broker that remains FENCED. As the broker remains FENCED it cannot assume leadership for
any partition, and so a log directory failure would be handled by the current partition leader.

The two assumptions above eliminate the risk of having a broker which is not shutting down, but is unable to continue its leadership responsibilities due to
the partition being persisted in a log directory that is broken or otherwise unavailable and the active controller not being aware of such an issue.

Storage formatting

The changes to storage formatting simply ensure the existence of two new fields of in an existing metadata file – – at the log directory meta.properties
roots. The new fields are ignored by earlier versions of Kafka.

Test plan
The system test for log directory failures will be extended to KRaft mode.

This feature has been .modeled in TLA+

Future work
Partition reassignment across directories and across brokers involves different API calls — and AlterPartitionReassignments AlterRepli

 Whilst reassigning partitions across brokers into a specific log directory is already possible, it involves an intricate sequence of prior caLogDirs.
calls to and expecting errors as a successful result. Once this work is done we can consolidate these two API calls by AlterReplicaLogDirs
extending to allow target log directories to be specified and deprecate . This can AlterPartitionReassignments AlterReplicaLogDirs
be done as part of a future KIP.
The only way to know which log directory UUID corresponds to which log directory path is by reading the files in each meta.properties
broker. A future KIP should expand the RPC response to include log directory UUIDs along with the system path for each log DescribeLogDirs
directory.
Partition initialization can be optimized, by having the controller preselect a log directory for new partitions. This would avoid having to wait for the
broker to send a request to indicate the chosen log directory before it is safe for the broker to assume leadership of AssignReplicasToDirs
the partition. Maybe the Controller could also take available storage in each log directory into account if the Broker indicates the available storage
space for each log directory as part of broker registration. This may be be proposed in a future KIP, but we'd need to figure out a way to
distinguish between a Controller initiated move, and a user manual move of a partition between log directories when the Broker is offline. 4

Rejected alternatives
Keeping the scope of the log directory to the broker — while this would mean a much simpler change, as was proposed in , if only the KIP-589
broker itself knows which partitions were assigned to a log directory, when a log directory fails the broker will need to send a potentially very large
request enumerating all the partitions in the failed disk, so that the controller can update leadership and ISRs accordingly.
Having the controller determine the log directory for new replicas — this would avoid a further RPC from the broker upon selecting a new log
directory for new replicas, and reduce the time until it is safe for the broker to take leadership of the replica. However the broker is in a better
position to make a choice of log directory than the controller, as it has easier access to e.g. disk usage in each log directory. The controller could
also have this information if the broker were to include it the broker registration. But to keep this change manageable and timely, this optimization
is best left for future work. It would also be trickier to manage the ZKKRaft migration if we had some brokers forwarding the RPC to the controllers
and others handling it directly.
Changing how log directory failure is handled in ZooKeeper mode — ZooKeeper mode is going away, proposed its deprecation in a near KIP-833
future release.
Using the system path to identify each log directory, or storing the identifier somewhere else — When running Kafka with multiple log directories,
each log directory is typically assigned to a different system disk or volume. The same storage device can be made accessible under a different
mount, and Kafka should be able to identify the contents as the same disk. Because the log directory configuration can change on the broker, the
only reliable way to identify the log directory in each broker is to add metadata to the file system under the log directory itself.

https://github.com/soarez/kafka/blob/kip-858-tla-plus/tla/Kip858.tla
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-589+Add+API+to+update+Replica+state+in+Controller
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-833%3A+Mark+KRaft+as+Production+Ready

1.

2.
3.

4.

Identifying offline log directories. Because we cannot identify them by mount paths, we cannot distinguish between an inaccessible log directory is
simply unavailable or if it has been removed from configured – think of a scenario where one log dir is offline and one was removed from log.

. In ZK mode we don't care to do this, and we shouldn't do it in KRaft either. What we need to know is if there are any offline log directories, dirs
to prevent re-streaming the offline replicas into the remaining online log dirs. In ZK mode, the 'isNew' flag is used to prevent the Broker from
creating partitions when any logdir is offline unless they're new. A simple boolean flag to indicate some log dir is offline is enough to maintain the
functionality.

Footnotes

The exception is the cluster metadata log directory, which can be configured separately via . If the metadata log directory metadata.log.dir
fails, then the broker cannot continue to run. If the broker isn't running it won't send any heartbeats and the controller will know to reassign
leadership and update ISRs. The main benefit of support for multiple log directories is to allow brokers to continue operating if any single one of
them fails. Typically, each log directory is mapped to an independent storage device while this critical metadata log directory would instead be

 mapped to the one of the main system partitions.
 Yes, double default, not a typo. The default setting, for the default value of the field.

If an existing, non JBOD KRaft cluster is upgraded to the first version that includes the changes described in this KIP, which write these new
fields, and is later downgraded, the file needs to still be readable. There's currently a hard check on the version number meta.properties

 which would fail for a new version number.
Despite not being an advertised feature, currently replicas can be moved between log directories while the broker is offline. Once the broker
comes back up it accepts the new location of the replica. To continue supporting this feature, the broker will need to compare the information in

 the cluster metadata with the actual replica location during startup and take action on any mismatch.

	KIP-858: Handle JBOD broker disk failure in KRaft

