
1.

a.

2.
3.

4.
a.
b.

5.

KIP-844: Transactional State Stores

Status
Motivation
Public Interfaces
Proposed Changes

Background
Overview
StateStore changes
Behavior changes
Configuration changes
Interface Changes

Compatibility, Deprecation, and Migration Plan
Test Plan
Transactions via Secondary State Store for Uncommitted Changes

Rejected Alternatives
RocksDB in-memory Indexed Batches
RocksDB Optimistic Transactions
Method to control transaction lifecycle in StateStore

Status
Current state: Accepted

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Right now, a stream processor with EOS has to delete all data from the local state stores after crash failure because the state stores might be in a partially
updated state. The partial update of a state store can happen during a crash failure because the changes to the local state are not atomic with respect to
Kafka Streams commit. If an application with EOS crashes between commits, it cannot reset the state to the previously committed, so it wipes the state
stores and replays the changelog from scratch.

This KIP proposes making writes to the state stores transactional so that they atomically commit only after the corresponding changes are committed to
the changelog topic. As a result, Streams applications configured with EOS will no longer need to wipe the state stores on crash failure.

Public Interfaces
Changed:

org.apache.kafka.streams.processor.StateStore
org.apache.kafka.streams.state.Stores
org.apache.kafka.streams.kstream.Materialized.StoreType

Proposed Changes

Background

This section briefly describes relevant parts of a stateful task's write lifecycle with EOS.

The task (,) registers its state stores. State stores load offset metadata from the checkpoint file (). That step aims to StreamTask StandbyTask link
establish a mapping between data in the state store and the offset of the changelog topic.

In case of crash failure, if the state store has data, but the checkpoint file does not exist, ProcessorStateManager throws an exception for
EOS tasks. This is an indicator to throw away local data and replay the changelog topic ().link

The task processes data and writes its state locally.
The task commits EOS transaction. calls that sends new TaskExecutor#commitOffsetsOrTransaction StreamsProducer#commitTransaction
offsets and commits the transaction.
The task runs a postCommit method (,) that:StreamTask StandbyTask

flushes the state stores and
updates the checkpoint file () for non-EOS tasks ().link link

Go to step 2 until task shuts down. During shutdown, the task stops processing data, then writes its current offset to the checkpoint file and halts.

If the failure happens at steps 2 or 3, the state store might contain records that have not yet been committed by EOS transaction. These uncommitted
records violate the EOS guarantees and are the reason why Kafka Streams deletes state store data if EOS is enabled.

https://lists.apache.org/thread/4vc18t0o2wsk0n235dd4pd1hlr1p6gm2
https://issues.apache.org/jira/browse/KAFKA-12549
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamTask.java#L226
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StandbyTask.java#L94
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/ProcessorStateManager.java#L231
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/ProcessorStateManager.java#L256-L265
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/TaskExecutor.java#L187-L188
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamsProducer.java#L296-L297
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamTask.java#L474
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StandbyTask.java#L197
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/AbstractTask.java#L96-L97
https://github.com/apache/kafka/blob/94d4fdeb28b3cd4d474d943448a7ef653eaa145d/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamTask.java#L491

1.
2.

1.
2.
3.
4.

a.
b.

5.

1.
2.
3.

Overview

This section introduces an overview of the proposed changes. The following sections will cover the changes in behavior, configuration, and interfaces in
detail.

This KIP introduces persistent thattransactional state stores

distinguish between uncommitted and committed data in the state store
guarantee atomic commit, meaning that either all uncommitted (dirty) writes will be applied together or none will.

These guarantees are sufficient to prevent the failure scenario described in the previous section.

This proposal deprecates the method and introduces 2 other methods instead - and StateStore#flush StateStore#commit(changelogOffset) S
 that commit the current state at a specified offset and recover from the crash failure to a previously tateStore#recover(changelogOffset)

checkpointed offset accordingly. With these changes, the lifecycle of a stateful task with transactional state stores becomes:

The task registers its state stores. The state stores call that discards uncommitted data.StateStore#recover
The task processes data and writes new records as uncommitted.
The task commits the EOS transaction.
The task runs a postCommit method that:

commits dirty writes.
updates the checkpoint file.

The task shuts down.

Consider possible failure scenarios:

The crash happens between steps 1 and 3. The uncommitted data will be discarded. The input records were not committed via the EOS
transaction, so the task will re-process them.
The crash happens between 3 and 4a. The EOS transaction has been already committed, but the state store hasn't. The state store will replay
the uncommitted records from the changelog topic.
The crash happens between 4a and 4b. The state store has already committed the new records, but they are not yet reflected in the checkpoint
file. The state store will replay the last committed records from the changelog topic. This operation is idempotent and does not violate correctness.
The crash happens after step 4b. The state store does nothing during recovery.

There are multiple ways to implement state store transactions that present different trade-offs. This proposal includes a single reference implementation
via a secondary RocksDB for uncommitted writes.

StateStore changes

This section covers multiple changes to the state store interfaces. This proposal replaces with 2 new methods - StateStore#flush StateStore#comm
 and and adds a method to determine if a state store is transactional.it(Long) StateStore#recover(long) boolean transactional()

The reasoning behind replacing with is two-fold. First, let's talk about why we don't need both and flush commit/recover flush commit:

There is always a single writer in Kafka Streams workloads, and all writes must go to a single currently open transaction.
There is always a single reader that queries dirty state from a single open transaction.
The state stores already explicitly call flush after AK transaction commits before writing to the checkpoint file to make uncommitted changes
durable. Adding a separate method will create room for error, such as a missing call or executing both commands in the wrong order.commit

In this sense, and are semantically the same thing. The separation of concerns between these 2 methods will be ambiguous and it is flush commit
unclear what is the correct call order.

The purpose of method is to transition the state store to a consistent state after crash failure. This StateStore#recover(long changelogOffset)
method discards any changes that are not yet committed to the changelog topic and ensures that its state corresponds to the offset that is greater than or
equal to the checkpointed .changelogOffset

Behavior changes

 returns , then the store performs writes via the implementation-specific transactional mechanismIf StateStore#transactional() true . Reads via R
 eadOnlyKeyValueStore methods return uncommitted data from the ongoing transaction.

A transactional state store opens the first transaction during initialization. It commits on StateStore#commit - first, the store commits the transaction,
then flushes, then starts a new transaction.

There are several places where StreamTask, ProcessorStateManager, and TaskManager check if EOS is enabled, and then it deletes the
checkpoint file on crash failure, specifically, when:

 resumes processing (StreamTask link)
 initializes state stores from offsets from checkpoint (ProcessorStateManager link1, link2)

 writes offsets to the checkpoint file on after committing (StreamTask link)
 handles revocation (TaskManager link)

If EOS is enabled, we will remove offset information for non-transactional state stores from the checkpoint file instead of just deleting the file.

https://github.com/apache/kafka/blob/85cfa70f59162d3b7ae23c55bb3f3fe97e56ba80/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamTask.java#L353-L362
https://github.com/apache/kafka/blob/85cfa70f59162d3b7ae23c55bb3f3fe97e56ba80/streams/src/main/java/org/apache/kafka/streams/processor/internals/ProcessorStateManager.java#L256-L265
https://github.com/apache/kafka/blob/85cfa70f59162d3b7ae23c55bb3f3fe97e56ba80/streams/src/main/java/org/apache/kafka/streams/processor/internals/ProcessorStateManager.java#L283-L285
https://github.com/apache/kafka/blob/85cfa70f59162d3b7ae23c55bb3f3fe97e56ba80/streams/src/main/java/org/apache/kafka/streams/processor/internals/StreamTask.java#L492
https://github.com/apache/kafka/blob/467bce04ae4cc0bacedeb82a1d130bd8b4e19304/streams/src/main/java/org/apache/kafka/streams/processor/internals/TaskManager.java#L596-L599

Configuration changes

StreamsConfig

default.dsl.store has a new valid value - that enables transactional RocksDB state store.txn_rocksDB

Interface Changes

StateStore

StateStore.java

/**
* Return true the storage supports transactions.
*
* @return {@code true} if the storage supports transactions, {@code false} otherwise
*/
@Evolving
default boolean transactional() {
 return false;
}

/**
 * Flush any cached data
 *
 */
@Deprecated
default void flush() {}

/**
 * Flush and commit any cached data
 * <p>
 * For transactional state store commit applies all changes atomically. In other words, either the
 * entire commit will be successful or none of the changes will be applied.
 * <p>
 * For non-transactional state store this method flushes cached data.
 *
 * @param changelogOffset the offset of the changelog topic this commit corresponds to. The
 * offset can be null if the state store does not have a changelog
 * (e.g. a global store).
 * @code null}
 */
@Evolving
default void commit(final Long changelogOffset) {
 if (transactional()) {
 throw new UnsupportedOperationException("Transactional state store must implement StateStore#commit");
 } else {
 flush();
 }
}

/**
 * Recovers the state store after crash failure.
 * <p>
 * The state store recovers by discarding any writes that are not committed to the changelog
 * and rolling to the state that corresponds to {@code changelogOffset} or greater offset of
 * the changelog topic.
 *
 * @param changelogOffset the checkpointed changelog offset.
 * @return {@code true} if the state store recovered, {@code false} otherwise.
 */
@Evolving
default boolean recover(final long changelogOffset) {
 if (transactional()) {
 throw new UnsupportedOperationException("Transactional state store must implement StateStore#recover");
 }
 return false;
}

Stores

/**
 * Create a persistent {@link KeyValueBytesStoreSupplier}.
 * <p>
 * This store supplier can be passed into a {@link #keyValueStoreBuilder(KeyValueBytesStoreSupplier, Serde,
Serde)}.
 * If you want to create a {@link TimestampedKeyValueStore} you should use
 * {@link #persistentTimestampedKeyValueStore(String)} to create a store supplier instead.
 *
 * @param name name of the store (cannot be {@code null})
 * @param transactional whether the store should be transactional
 * @return an instance of a {@link KeyValueBytesStoreSupplier} that can be used
 * to build a persistent key-value store
 */
 public static KeyValueBytesStoreSupplier persistentKeyValueStore(final String name, final boolean
transactional)

 /**
 * Create a persistent {@link KeyValueBytesStoreSupplier}.
 * <p>
 * This store supplier can be passed into a
 * {@link #timestampedKeyValueStoreBuilder(KeyValueBytesStoreSupplier, Serde, Serde)}.
 * If you want to create a {@link KeyValueStore} you should use
 * {@link #persistentKeyValueStore(String)} to create a store supplier instead.
 *
 * @param name name of the store (cannot be {@code null})
 * @param transactional whether the store should be transactional
 * @return an instance of a {@link KeyValueBytesStoreSupplier} that can be used
 * to build a persistent key-(timestamp/value) store
 */
 public static KeyValueBytesStoreSupplier persistentTimestampedKeyValueStore(final String name, final boolean
transactional)

 /**
 * Create a persistent {@link WindowBytesStoreSupplier}.
 * <p>
 * This store supplier can be passed into a {@link #windowStoreBuilder(WindowBytesStoreSupplier, Serde,
Serde)}.
 * If you want to create a {@link TimestampedWindowStore} you should use
 * {@link #persistentTimestampedWindowStore(String, Duration, Duration, boolean)} to create a store supplier
instead.
 *
 * @param name name of the store (cannot be {@code null})
 * @param retentionPeriod length of time to retain data in the store (cannot be negative)
 * (note that the retention period must be at least long enough to contain the
 * windowed data's entire life cycle, from window-start through window-end,
 * and for the entire grace period)
 * @param windowSize size of the windows (cannot be negative)
 * @param retainDuplicates whether or not to retain duplicates. Turning this on will automatically disable
 * caching and means that null values will be ignored.
 * @param transactional whether the store should be transactional
 * @return an instance of {@link WindowBytesStoreSupplier}
 * @throws IllegalArgumentException if {@code retentionPeriod} or {@code windowSize} can't be represented as
{@code long milliseconds}
 * @throws IllegalArgumentException if {@code retentionPeriod} is smaller than {@code windowSize}
 */
 public static WindowBytesStoreSupplier persistentWindowStore(final String name,
 final Duration retentionPeriod,
 final Duration windowSize,
 final boolean retainDuplicates,
 final boolean transactional) throws
IllegalArgumentException

/**
 * Create a persistent {@link WindowBytesStoreSupplier}.
 * <p>
 * This store supplier can be passed into a {@link #windowStoreBuilder(WindowBytesStoreSupplier, Serde, Serde)}.

1.
2.
3.

 * If you want to create a {@link TimestampedWindowStore} you should use
 * {@link #persistentTimestampedWindowStore(String, Duration, Duration, boolean)} to create a store supplier
instead.
 *
 * @param name name of the store (cannot be {@code null})
 * @param retentionPeriod length of time to retain data in the store (cannot be negative)
 * (note that the retention period must be at least long enough to contain the
 * windowed data's entire life cycle, from window-start through window-end,
 * and for the entire grace period)
 * @param windowSize size of the windows (cannot be negative)
 * @param retainDuplicates whether or not to retain duplicates. Turning this on will automatically disable
 * caching and means that null values will be ignored.
 * @param transactional whether the store should be transactional
 * @return an instance of {@link WindowBytesStoreSupplier}
 * @throws IllegalArgumentException if {@code retentionPeriod} or {@code windowSize} can't be represented as
{@code long milliseconds}
 * @throws IllegalArgumentException if {@code retentionPeriod} is smaller than {@code windowSize}
 */
public static WindowBytesStoreSupplier persistentTimestampedWindowStore(final String name,
 final Duration retentionPeriod,
 final Duration windowSize,
 final boolean retainDuplicates,
 final boolean transactional) throws
IllegalArgumentException

/**
 * Create a persistent {@link SessionBytesStoreSupplier}.
 *
 * @param name name of the store (cannot be {@code null})
 * @param retentionPeriod length of time to retain data in the store (cannot be negative)
 * (note that the retention period must be at least as long enough to
 * contain the inactivity gap of the session and the entire grace period.)
 * @param transactional whether the store should be transactional
 * @return an instance of a {@link SessionBytesStoreSupplier}
 */
public static SessionBytesStoreSupplier persistentSessionStore(final String name,
 final Duration retentionPeriod,
 final boolean transactional)

Materialized.StoreType

Materialized.StoreType enum has a new value that corresponds to a transactional state store implementation based on RocksDB.TXN_ROCKS_DB

Compatibility, Deprecation, and Migration Plan
Transactional state stores will be disabled by default. Both Streams DSL and Processor API users can enable transactional writes in the built-in RocksDB
state store by passing a new boolean flag to constructor and factory methods. Custom state stores will transactional=true Materialized Stores
have an option to enable transactionality by adjusting their implementation according to the contract.StateStore#transactional()

StateStore#flush() method is deprecated. New method will by default fall back to StateStore#commit(changelogOffset) StateStore#flush
 for non-transactional state stores.()

Proposed changes are source compatible and binary incompatible with previous releases.

Test Plan
Add a variation for all existing stateful tests to run with enabled transactional state stores.
Add tests to ensure that transactional state stores discard uncommitted changes after crash failure.
Add tests to ensure that transactional state stores replay missing changes from the changelog topic on recovery.

Transactions via Secondary State Store for Uncommitted Changes
This proposal comes with a reference implementation used in the factory methods used to create transactional state stores. Stores# In this
implementation, transactionality is guaranteed by batching uncommitted (dirty) writes in a temporary RocksDB instance. On commit, such state store
copies uncommitted writes from the temporary store to the main store, then truncates the temporary stores.

All writes and deletes go to the temporary store. Reads query the temporary store; if the data is missing, query the regular store. Range reads query both
stores and return a that merges the results. KeyValueIterator On crash failure, calls ProcessorStateManager StateStore#recover(offset)
that truncates the temporary store.

The major advantage of this approach is that the temporary state store can optionally use the available disk space if the writes do not fit into the in-memory
buffer.

The disadvantages are:

It doubles the number of open state stores
It potentially has higher write and read amplification due to uncontrolled flushes of the temporary state store.
It requires an additional value copy per write to model deletions.

Rejected Alternatives

RocksDB in-memory Indexed Batches

A considered alternative is to make built-in RocksDB state store transactional by using WriteBatchWithIndex, which is similar to WriteBatch already
used segment stores, except it also allows reading uncommitted data.

The advantage of this approach is that it uses the RocksDB built-in mechanism to ensure transactionality and offers the smallest possible write
amplification overhead.

The disadvantage of this approach is that all uncommitted writes must fit into memory. In practice, RocksDB developers recommend the batches to be no
larger than 3-4 megabytes (link) which might be an issue

RocksDB Optimistic Transactions

Another considered alternative is . This alternative suffers from the same issues as in-memory indexed batches, but also has OptimisticTransactionDB
greater overhead. It offers more guarantees than Kafka Streams needs, specifically - ensures that there were no write conflicts between concurrent
transactions before committing. There are no concurrent transactions in Kafka Streams, so there is no reason to pay for the associated overhead.

Method to control transaction lifecycle in StateStore

A considered alternative is to introduce methods like StateStore#beginTxn and StateStore# tcommitTxn o manage transactions lifecycle. I don’t
think they are necessary due to stream workloads specifics - there is always a single transaction for a given task and that transaction commits only after
the commit to the changelog. Moreover, explicit method calls to begin and commit a transaction introduce possible invalid states, like skipping beginTxn
before committing, beginning a transaction multiple times, committing after flushing, etc.

https://rocksdb.org/blog/2015/02/27/write-batch-with-index.html
https://github.com/facebook/rocksdb/issues/5938#issuecomment-545097934
https://github.com/facebook/rocksdb/wiki/Transactions#optimistictransactiondb

	KIP-844: Transactional State Stores

