
KIP-857: Streaming recursion in Kafka Streams

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Some algorithms are best expressed , which would involve piping the output of a pipeline back to an earlier point in the same pipeline. An recursively
example of this is graph/tree-traversal, where it can be useful to recursively traverse up a tree as new leaf nodes arrive.

This document introduces the concept of , a new DSL operator to succinctly express it, and optimizations that Kafka Streams can streaming recursion
make to recursive algorithms that aren't currently possible.

Public Interfaces
The following new method will be introduced:

interface KStream<K, V> {
 KStream<K, V> recursively(UnaryOperator<KStream<K, V>> op);
}

Note: is UnaryOperator java.util.function.UnaryOperator

Proposed Changes
The new method enables users to express recursive algorithms. Consider an example where we count all descendants of each node in a recursively
graph:

https://lists.apache.org/thread/116omrx7mjjcwv8wdmc5mxpt9wjhnrtw
https://issues.apache.org/jira/browse/KAFKA-14110

1.
2.
3.

1.
a.

b.
2.
3.

// <NodeId, ParentId>
KStream<String, String> nodes = builder.stream("nodes");

// <NodeId, ParentId>
KTable<String, String> parents = nodes.toTable();

// count descendants by recursively producing parent records
// 1L is used as a dummy value below, since we will be discarding values when we count the records by key
KTable<String, Long> descendants = nodes
 .map((child, parent) -> { KeyValue(parent, 1L) } // emit "update" for parent of new node
 .recursively((updates) -> { // recursively emit "updates" for each ancestor of
the parent
 // emit a new update for the parent of this node
 // the root node has no parent, so recursion terminates at the root node
 updates
 .join(parents, (count, parent) -> { parent })
 .map((child, parent) -> { KeyValue(parent, 1L) })
 })
 .groupByKey()
 .count()

Note: for simplicity, this example assumes that graph nodes arrive and are processed in-order; i.e. parent nodes are always processed before children.

The method applies input records to its argument. The results are then both emitted as a result of recursively op recursively and also fed back in to
.the op KStream

Restrictions:

op cannot be , or an equivalent function that simply returns its argument unmodified - this would produce an infinite UnaryOperator.identity
recursive loop, since there's no opportunity refine the output to break out of the loop.
op "terminate"; that is, it must have some condition which eventually prevents further recursion of a record. In our example here, the MUST
terminating condition is the , since the root node of our graph will have no , so the will produce no output for the root node.join parent join

We can attempt to detect "definitely non-terminating" arguments by failing to detect operations that can cause the stream to terminate (e.
g. , , , etc.) in the process graph produced by the function.filter join flatMap
We that a function that includes terminating operations (, , , etc.) actually terminates.cannot guarantee filter join flatMap

Implementation

In , implementation is fairly simple:KStreamImpl

We call , passing our current as its argument. This produces our op KStream output KStream.
We wire up the from the as a of the current . This takes care of the recursion.graphNode output KStream parent KStream
Finally, we return the . This enables users to operate on the records that are being recursively produced, as above.output KStream

Compatibility, Deprecation, and Migration Plan
No backwards incompatible changes are introduced.

Test Plan
The following tests will be added:

Counting descendants of graph nodes arriving in-order (as above)
Counting descendants of graph nodes arriving in any order

Rejected Alternatives
It's currently possible to implement streaming recursion via explicit topics, albeit with a number of disadvantages:

The explicit topic is entirely internal to the Topology, yet .it has to be managed explicitly by the user
This is functionally a topic, however, because it's explicitly managed, repartition Streams can't automatically delete consumed

.records
Consequently, to prevent the topic growing unbounded, .users would need to set retention criteria, which risks possible data loss

In scenarios where repartitioning is not required, .the explicit recursive topic adds overhead
It also adds some complexity to the user's program, making it .more difficult to reason about than it needs to be

	KIP-857: Streaming recursion in Kafka Streams

