
KIP-874: TopicRoundRobinAssignor

Status
Motivation

How does it work ?
Why is it better for data consistency per topic ?
Why is it thread safer ?
How does it work if we have multiple containers running the same application ?

Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: None

JIRA:

GitHub : https://github.com/apache/kafka/pull/12705

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
We are using Kafka as a messaging system (without streaming) with the following properties :

Each topic can contain only one type of message
Each consumer can subscribe to any partitions of topics (subscriptions only depends on the partition assignment strategy)
Each consumer uses the same error exception handling strategy, they stopped when the consumption failed (after retrying from 0 to n times)

Sometimes ago, we were using only one consumer per microservice so we have to scale up the number of pods (if topics have multiple partitions) if we
would like to improve performance consumption.

Therefore, we have decided to have multiple consumers in a same microservice (1 thread per consumer).

Then some questions came up :

How can we keep a good data consistency for a topic ? We basically want to consume all or nothing from a topic to avoid that some data are not
be visibles for client for a long time whereas others (possibly created 1 or more hours after) are visibles
How can we be thread safe as much as possible ? We are writing a company framework on top of Spring Boot, we would like to limit the risk of
concurrency issues
As consumers are stopped after failing, how can we avoid to propagate the "corrupt" message to other consumers of a same microservice to
continue consumption of other topics ? We handle this by keeping in memory partitions that failed.

Combining these hypothesis and requirements, we though that having as many consumers as topics is the best option if each partitions of a topic is
assigned to only one consumer.

So, we have needed of a new partition assignment strategy, the TopicRoundRobinAssignor.

How does it work ?

Suppose there are two consumers and , two topics and , and each topic has 3 partitions, resulting in partitions , , , , C0 C1 t0 t1 t0p0 t0p1 t0p2 tp1p0 t1p1
and . t1p2

The assignment will be:
C0: [t0p0, t0p1, t0p2]
C1: [t1p0, t1p1, t1p2]

Why is it better for data consistency per topic ?

 Unable to render Jira issues macro, execution

error.

https://github.com/apache/kafka/pull/12705

If we use one of the four existing assignor, we always get mixed partitions assigned to a topic (ie. a partition of different topic).
If one of the consumer fails, we kept in memory which partition failed in order to not propagate the "corrupt" message.
Otherwise, after rebalancing, when the "corrupt" message will be consumed by an other consumer, it will be stopped also, and so on, and so on...

Let me take the same example.
Suppose, there are 2 consumers and , and two topics and , and each has 3 partitions, resulting in partitions , , , , a C0 C1 t0 t1 t0p0 t0p1 t0p2 tp1p0 t1p1
nd . t1p2

If I use the standard , the assignement will be :RoundRobinAssignor
C0: [t0p0, t0p2, t1p1]
C1: [t0p1, t1p0, t1p2]

If fails, it will be stopped and the new assignement will be : C0
C1: [t0p1, t1p0, t1p2, t0p0, t0p2, t1p1]

As we keep in memory that we do not want to consume , , , only records from , , will continue to be consumed. t0p0 t0p2 t1p1 t0p1 t1p0 t1p2
Therefore, if we do not fix the issue quickly about the "corrupt" message, the data from each topic will diverge (some records will be consumed, some other
not).

If we use the , the assignment will be : TopicRoundRobinAssignor
C0: [t0p0, t0p1, t0p2]
C1: [t1p0, t1p1, t1p2]

If fails, it will be stopped and the new assignment will be : C0
C1: [t0p0, t0p1, t0p2, t1p0, t1p1, t1p2]

As we keep in memory that we do not want to consume , , , only records from , , will continue to be consumed. t0p0 t0p1 t0p2 t0p1 t0p1 t0p2
Therefore, I will continue to consume all records of a same topic and my data stay consistent as much as possible.

Why is it thread safer ?

If we use one of the four existing assignor, we always get mixed partitions assigned to a topic (ie. a partition of different topic) and so records of a same
topic can be proceed concurrently.

Let me take an example.
Suppose, there are 2 consumers and , and two topics and , and each has 3 partitions, resulting in partitions , , , , a C0 C1 t0 t1 t0p0 t0p1 t0p2 tp1p0 t1p1
nd . t1p2

If we use the standard , the assignement will be :RoundRobinAssignor
C0: [t0p0, t0p2, t1p1]
C1: [t0p1, t1p0, t1p2]

In that case, we must ensure that the processes executed when we received records from and must be thread safe because they came from two t0 t1
different threads and in parallel. C0 C1

If we use the , the assignement will be :TopicRoundRobinAssignor
C0: [t0p0, t0p1, t0p2]
C1: [t1p0, t1p1, t1p2]

In that case, each record record of a same topic is processed in the same thread, therefore there are less risks of concurrency issues.

How does it work if we have multiple containers running the same application ?

Using the TopicRoundRobinAssignor, the partitions are uniformly balanced to each container, therefore we can get better performances.

Let suppose there are 2 instances of the same application and , 2 consumers and , and two topics and . has 3 partitions and has A0 A0 C0 C1 t0 t1 t0 t1
two partitions resulting in partitions : , , , , .t0p0 t0p1 t0p2 tp1p0 t1p2

If we use the , the assignment will be : TopicRoundRobinAssignor
A0: [C0: [t0p0, t0p2], C1: [t1p0]]
A1: [C0: [t0p1], C1: [t1p1]]

Public Interfaces
org.apache.kafka.clients.consumer.TopicRoundRobinAssignor

Proposed Changes
I propose to add the TopicRoundRobinAssignor as a possible partition assignment strategy, please refer to : https://github.com/apache/kafka/pull/12705

https://github.com/apache/kafka/pull/12705

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users? No impact
If we are changing behavior how will we phase out the older behavior? Existing behavior will not change as it is a new possibility
If we need special migration tools, describe them here. No migration tool needed
When will we remove the existing behavior? No need to remove the existing behavior

Test Plan
The TopicRoundRobinAssignor is unit tested, please refer to : .https://github.com/apache/kafka/pull/12705

Rejected Alternatives
Anyone that needs the same assignment partition strategy can create its own assignor or simply copy/paste the content of the TopicRoundRobinAssignor
in its code and use it by configuring the property.partition.assignment.strategy

https://github.com/apache/kafka/pull/12705

	KIP-874: TopicRoundRobinAssignor

