
KIP-880: X509 SAN based SPIFFE URI ACL within mTLS
Client Certificates

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Under discussion

Discussion thread: KIP-880: X509 SAN based SPIFFE URI ACL within mTLS Client Certificates

JIRA: KAFKA-14340

Motivation
Today there are several integration scenario's between Kakfa and Kubernetes and Istio hosted micro-services.

Some prefer to deploy both consumers and producers, and brokers into Kubernetes and leverage Istio to take care of the mTLS.
Some prefer to only deploy consumers and producers inside Kubernetes and deploy Kafka outside the K8s cluster (VM/BareMetal) or consume it
as a SaaS offering.

This feature request is aimed at deployment scenario's where consumers and producers are deployed as micro-service within K8s and the broker is
outside of the K8s cluster. As a Kafka consumer and producer, we want to be able to leverage Istio's build-in Client ID system, which is based on X509
SPIFFE URI's in the SAN extension field. Today, only the CN field can be leveraged as an AuthNZ mechanism in Kafka.

The mayor advantage of this proposal would be that we do not need to leverage PLAINTEXT or tunnel an other AuthNZ mechanism, but can directly use
Istio/SPIFFE provided Client Identity with the mTLS based AutNZ and ACL rule mechanism, providing smoother integration, better security and increased
performance.

Some external documentation references on the concept of use a SPIFFE ID as secure workload Identity:

https://istio.io/latest/docs/concepts/security/#principals
https://istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe (Istio and SPIFFE share the same identity document: SVID (SPIFFE Verifiable
Identity Document). For example, in Kubernetes, the X. 509 certificate has the URI field in the format of spiffe://\<domain\>/ns/\<namespace\>/sa

)/\<serviceaccount\> .
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-id

Public Interfaces
This is not a new interface, but an implementation of the interface to add support for SPIFFE based SAN URIs and return them as KafkaPrincipalBuilder
a Principle so they can be leveraged to create ACL rules directly.

Proposed Changes
This is not a new interface, but an implementation of the interface to add support for SPIFFE based SAN URIs and return them as KafkaPrincipalBuilder
a Principle so they can be leveraged to create ACL rules directly.

There are several POC implementations out there implementing a bespoke implementation for this purpose. Two examples include KafkaPrincipalBuilder

https://github.com/traiana/kafka-spiffe-principal
https://github.com/boeboe/kafka-istio-principal-builder (written by myself)

I can use some help here to determine the best implementation and improve the code in terms of resiliency and logging.

The proposal would be to include this functionality within Kafka's main functionality, so end-users do not need to bother with loading custom classes and
leverage a vetted implementation instead.

Compatibility, Deprecation, and Migration Plan

https://lists.apache.org/thread/yrw2gr6n5fqy132f4hht3wo3g2w11pngDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-14340
https://istio.io/latest/docs/concepts/security/#principals
https://istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-id
https://github.com/traiana/kafka-spiffe-principal
https://github.com/boeboe/kafka-istio-principal-builder

What impact (if any) will there be on existing users?
If we are changing behavior how will we phase out the older behavior?
If we need special migration tools, describe them here.
When will we remove the existing behavior?

Test Plan
Describe in few sentences how the KIP will be tested. We are mostly interested in system tests (since unit-tests are specific to implementation details).
How will we know that the implementation works as expected? How will we know nothing broke?

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

	KIP-880: X509 SAN based SPIFFE URI ACL within mTLS Client Certificates

