
KIP-881: Rack-aware Partition Assignment for Kafka
Consumers

Status
Motivation
Public Interfaces
Proposed Changes

Rebalance to Improve Locality After Reassignments
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Use client tags similar to Kafka Streams instead of using rack configuration
Propagate rack in userData field
Implement new assignors for rack-aware assignment instead of updating existing assignors

Status
Current state: Accepted

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka clusters are often distributed across multiple availability zones (AZ), especially in Cloud deployments. Rack-aware replica placement support in
Kafka introduced in can be used to configure availability zones as racks for brokers. Replicas of each partition are distributed across different KIP-36
availability zones to ensure that a zonal outage doesn’t affect availability of a partition. added support for consumers to fetch from their closest KIP-392
replica. This feature enables consumers to fetch data from leaders or followers within the same availability zone, when possible, to benefit from locality.

Rack-aware Kafka deployments configure for every broker based on their rack, which may be the AZ identifier. Brokers may also configure broker.rack
 that determines the preferred replica used to read data from. The default replica selector uses the leader as the preferred replica.selector.class

replica for reads, but the built-in can be configured to match the rack of the replica with the rack of the consumer. RackAwareReplicaSelector
Consumers using this feature benefit from locality and avoid expensive cross-AZ traffic by configuring . Rack ids are propagated to brokers client.rack
in fetch requests and this enables the rack-aware replica selector to choose a replica on the same rack as the consumer and provide this information to the
consumer to use in subsequent fetch requests . This feature works well in scenarios where every rack contains replicas of all partitions. For example, for a
Kafka deployment with three AZs and replication factor 3, rack-aware replica placement places the three replicas on the 3 AZs. So every AZ has a replica
for every partition. This enables consumers in any of the 3 AZs to consume from their local replica. If the number of replicas is lower than the number of
AZs or racks, perhaps because number of AZs is higher than replication factor, some partitions may not have replicas on some AZs. Consumers running
on those AZs will have to fetch data from the leader in another AZ. Rack-aware partition assignment for consumers will improve locality in this case.

KIP-848 describes the next generation consumer group protocol that fixes several issues with the existing protocol. This proposal already includes rack
information in the protocol, making it easy to introduce rack-aware partition assignment in both the server-side partition assignors and client-side partition
assignors proposed by that KIP. Since KIP-848 is a major rewrite of the consumer implementation, the existing consumer implementation is likely to be in
widespread use for quite some time. Since the protocol change to support rack-aware partition assignment is a minor change, it will be good to support this
feature in the existing consumer implementation as well so that it can be adopted sooner.

Public Interfaces
This KIP proposes to include rack information in ConsumerProtocolSubscription message. Rack will be populated by each consumer from the
existing client.rack configuration. The new protocol including the new RackId field will be:

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/0b5lx3k4fzcvk1w5dpy050lbt5vp7bfc
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-36+Rack+aware+replica+assignment
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-848%3A+The+Next+Generation+of+the+Consumer+Rebalance+Protocol

ConsumerProtocolSubscription schema

{
 "type": "data",
 "name": "ConsumerProtocolSubscription",
 // Subscription part of the Consumer Protocol.
 //
 // The current implementation assumes that future versions will not break compatibility. When
 // it encounters a newer version, it parses it using the current format. This basically means
 // that new versions cannot remove or reorder any of the existing fields.
 //
 // Version 1 adds owned partitions.
 // Version 2 adds generationId (KIP-792).
 // Version 3 adds rack id to enable rack-aware assignment. <== NEW
 "validVersions": "0-3",
 "flexibleVersions": "none",
 "fields": [
 { "name": "Topics", "type": "[]string", "versions": "0+" },
 { "name": "UserData", "type": "bytes", "versions": "0+", "nullableVersions": "0+",
 "default": "null", "zeroCopy": true },
 { "name": "OwnedPartitions", "type": "[]TopicPartition", "versions": "1+", "ignorable": true,
 "fields": [
 { "name": "Topic", "type": "string", "mapKey": true, "versions": "1+", "entityType": "topicName" },
 { "name": "Partitions", "type": "[]int32", "versions": "1+"}
]
 },
 { "name": "GenerationId", "type": "int32", "versions": "2+", "default": "-1"},
 { "name": "RackId", "type": "string", "versions": "2+", "nullableVersions": "2+", "default": "null",
"ignorable": true } <== NEW
]
}

Rack id will be included in for each member's subscription metadata in ConsumerPartitionAssignor.Subscription ConsumerPartitionAssign
 so that partition assignors can match the rack id of members with rack id of partition replicas.or.GroupSubscription

Changes to ConsumerPartitionAssignor.Subscription

final class Subscription {

 private final Optional<String> rackId;

 public Subscription(List<String> topics, ByteBuffer userData, List<TopicPartition> ownedPartitions, int
generationId, Optional<String> rackId) {
 this.topics = topics;
 this.userData = userData;
 this.ownedPartitions = ownedPartitions;
 this.generationId = generationId;
 this.rackId = rackId;
 this.groupInstanceId = Optional.empty();
 }

 public Subscription(List<String> topics, ByteBuffer userData, List<TopicPartition> ownedPartitions) {
 this(topics, userData, ownedPartitions, Optional.empty());
 }

 public Optional<String> rackId() {
 return rackId;
 }

}

We also propose to update range assignor and cooperative sticky assignor to use rack-aware algorithm if is configured. Rack-aware client.rack
assignors will match the racks of consumers and replicas on a best-effort basis and attempt to improve locality for consumer partition assignment.

Proposed Changes
For consumers which specify , the rack id be will added to message using the protocol described client.rack ConsumerProtocolSubscription
above. This propagates the rack id of all members to the consumer that performs partition assignment.

Partition assignors already have access to cluster metadata when performing the assignment:

Existing partition assignor interface

GroupAssignment assign(Cluster clusterMetadata, GroupSubscription groupSubscription);

The clusterMetadata instance used by partition assignors contains replica information for every partition, where each replica's rack is included in their
 Node if the broker was configured with broker.rack. This KIP also adds rack id for each member's instance in Subscription GroupSubscription.

So a rack-aware partition assignor can match the rack id of the members with the rack id of the replicas to ensure that consumers are assigned partitions
in the same rack if possible. In some cases, this may not be possible, for example, if there is a single consumer and one partition which doesn't have a
replica in the same rack. In this case the partition is assigned with mismatched racks and will result in cross-rack traffic. The built-in assignors will prioritize
balancing partitions over improving locality, so in some cases, partitions may be allocated to a consumer in a different rack if there aren't sufficient
partitions in the same rack as the consumer. The goal will be to improve locality for cases where load is uniformly distributed across a large number of
partitions.

Rebalance to Improve Locality After Reassignments

Rack-aware partition assignment will use racks of all partition replicas including those marked offline or not in the ISR to ensure that transient states don't
result in sub-optimal assignments. But replica racks may change due to reassignments when replicas are added or removed. In this case, the existing
assignment may no longer be optimal and the next rebalance may not happen for a long time. To improve locality in this case, leader will trigger rebalance
whenever it detects that the set of racks of partition replicas have changed in the metadata. This rebalance will be triggered only if the leader has client.

 configured. Since reassignments that change the set of replica racks of a partition are rare typically, this shouldn't result in frequent rebalances.rack

Compatibility, Deprecation, and Migration Plan
The new optional rack field for ConsumerProtocolSubscription will be added at the end of the structure, so it will not affect consumers with older
versions.

Consumers without rack ids and/or partitions with replicas without rack ids are assigned partitions using the non-rack-aware algorithm by all assignors,
ensuring that consumers with different versions are supported. Range assignor and cooperative sticky assignor will use rack-aware algorithm if client.

 is provided and both the client and brokers use version 3.4 and above. If either is at a lower version, existing non-rack-aware algorithm will be used. rack
In the case where replication factor is greater than or equal to the number of racks, all racks will have replicas of all partitions and hence the assignors will
retain very similar assignment as before. If replication factor is lower and is provided, the updated assignors will use the new rack-aware client.rack
logic, but there is no other compatibility impact.

Test Plan
Unit tests will be added for the protocol change and the new assignors.
Existing integration tests will be used to ensure that clients using existing assignors work with and without rack ids.
New integration tests will be added to verify rack-aware partition assignment.
Existing system tests will be used to verify compatibility with older versions.

Rejected Alternatives

Use client tags similar to Kafka Streams instead of using rack configuration

Kafka Streams introduced rack-aware rack assignment in . Flexible client tags were introduced to implement rack-awareness along with a rack-KIP-708
aware assignor for standby tasks. Tags are more flexible, but since we want to match existing rack configuration in the broker and consumers, it seems
better to use rack id directly instead of adding prefixed tags. The next generation consumer group protocol proposed in also uses racks in the KIP-848
protocol.

Propagate rack in userData field

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-708%3A+Rack+aware+StandbyTask+assignment+for+Kafka+Streams
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-848%3A+The+Next+Generation+of+the+Consumer+Rebalance+Protocol

Kafka Streams currently propagates tags in the bytes field that is populated by its task assignor. We could do the same and populate rack only userData
in a rack-aware partition assignor in the field that is managed by assignors. Since is a standard consumer configuration option userData client.rack
and is used for follower fetching, it seems better to include this at the top level rather than in assignor-specific structure. This will allow any of userData
the consumer partition assignors to take advantage of rack-based locality in future.

Implement new assignors for rack-aware assignment instead of updating existing assignors

Rack-awareness is not enabled by default in Kafka clients and brokers. For example, brokers use rack-aware replica selector for follower fetching, only if
brokers are explicitly configured with . We could retain existing assignors in consumers and implement new assignor classes replica.selector.class
for rack-aware assignment. But that requires consumers to be explicitly configured with new assignors to benefit from this KIP. Since consumers are
configured with only to benefit from locality with follower fetching, it seems reasonable to update existing assignors rather than require a client.rack
configuration change. In scenarios where all racks have replicas of all partitions, we can retain the existing logic, so there will be no impact of this change
in this case. In scenarios where clients have configured to benefit from locality, but racks have a subset of replicas, it seems reasonable to client.rack
make existing assignors rack-aware to benefit from improved locality without additional configuration changes.

	KIP-881: Rack-aware Partition Assignment for Kafka Consumers

