
KIP-883: Add isDeleted flag when stopping a connector

Status
Motivation
Public Interfaces
Proposed Changes

Worker class
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Add new destroy()/onDelete() method to the Connect API
Delete provisioned resources out-of-band

Status
Current state: Under Discussion

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The base class for all Source and Sink connectors is the abstract class. This class defines a org.apache.kafka.connect.connector.Connector
few abstract methods (e.g. and) that are then implemented by Connectors and are void start(Map<String, String> props) void stop()
invoked as part of their lifecycle.

As connectors interact with external systems, they sometimes need to provision external resources. We can imagine a Sink connector that creates new
queues in a Messaging System before writing messages to them, or a Source connector that activates an account before sending requests to a source
system, among other use cases. A more concrete example (and one that concerns us in particular) is a source connector that audits database changes by
creating an "audit" table and sets up database triggers to insert row-level updates to that table.

There are cases where we might want to cleanup these resources when the connector that uses them is deleted. It can be to save costs (e.g. the external
system charges per active account), or compute resources (triggers writing database updates to an audit table that will no longer be read from should be
removed, and so does the audit table). Taking other actions, like deleting the connector offsets (as discussed on) might also be considered as part KIP-875
of this cleanup process.

The Connector API in Kafka Connect does not provide any hooks to indicate when a connector has been deleted, so it is currently not possible to react to
this event. The method in its current form cannot be used for this purpose, as a Connector can be stopped and restarted at any point (e.g. when stop()
its configuration changes).

Public Interfaces

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/1r1fsczolopo3dyrb1f1psw3hbjrwmz9
https://cwiki.apache.org/confluence/display/KAFKA/KIP-875%3A+First-class+offsets+support+in+Kafka+Connect#KIP875:FirstclassoffsetssupportinKafkaConnect-Automaticallydeleteoffsetswithconnectors

org.apache.kafka.connect.connector.Connector

package org.apache.kafka.connect.connector;

public abstract class Connector implements Versioned {

 /**
 * Stop this connector.
 */
 public abstract void stop();

 /**
 * Stop this connector, and also indicate if the connector has been deleted.
 * <p>
 * Connectors are not required to override this method, unless they need to perform some cleanup
 * actions in cases where the connector has been deleted.
 *
 * @param isDeleted indicates if the connector has been deleted.
 */
 public void stop(boolean isDeleted) {
 stop();
 }
}

Proposed Changes
Add an overload to the method to the Connector public API, with a default implementation that calls the existing void stop(boolean isDeleted) voi

 method. This new method can then be overridden by connectors that need to take any additional steps (remove assets, delete offsets, etc) as d stop()
part of the deletion process.

Worker class

Both StandaloneHerder and DistributedHerder invoke methods from the class to start/stop the connector instance. This KIP will overload the Worker Work
 method, passing a flag indicating that the connector has been deleted. This flag be passed to the new er#stopAndAwaitConnector(...) Connector

 method, so Connectors can implement any additional logic needed.#stop(isDeleted)

Compatibility, Deprecation, and Migration Plan
The proposed change is fully backward-compatible with existing Kafka Connect releases. The new method added to the public interface includes an
default implementation of the new method, so existing connectors don't need to override it if not needed.

Test Plan
Integration tests will be added to make sure that the new method is invoked when a connector is deleted. Mainly:

Add/update unit tests to WorkerTest and WorkerConnectorTest classes.
Add integration tests in and auxiliary classes (ConnectWorkerIntegrationTest EmbeddedConnectClusterAssertions,SampleSource

 etc.)Connector,SampleSinkConnector

Rejected Alternatives

Add new destroy()/onDelete() method to the Connect API

Initially we thought about adding a new destroy() method to the Connector class. The idea was to call this method on , WorkerConnector#doShutdown()
right after the is executed. This however presented some questions around the execution guarantees, for example, what the behavior connector.stop()
would be when the Connector#stop() method never returned, or the method throws an exception. To make things simpler, an overloaded Connector#stop
(boolean isDeleted) was introduced instead, so the expected behavior remains the same as with the current implementation. That is, the method is
guaranteed to be called if the connector stops within (default: 5 secs)CONNECTOR_GRACEFUL_SHUTDOWN_TIMEOUT_MS

Delete provisioned resources out-of-band

https://github.com/apache/kafka/blob/3.3/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerConnector.java#L262
https://github.com/apache/kafka/blob/3.3/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerConnector.java#L274

In theory, users can monitor Kakfa Connect configuration topics to determine if/when a connector has been deleted. Reacting to this event outside of the
connector's context is probably not very useful, as there might not be enough contextual information to perform any meaningful action. It is also better to
keep these concerns encapsulated within the connector framework itself.

	KIP-883: Add isDeleted flag when stopping a connector

