
KIP-898: Modernize Connect plugin discovery

Status
Motivation
Proposed Changes
Public Interfaces

Plugins
Connect Worker Configuration
Plugin Path Management Script

Compatibility, Deprecation, and Migration Plan
Developers
Operators
Deprecation

Test Plan
Rejected Alternatives

Status
Current state: Released in 3.6.0

Discussion thread: here

Voting thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
When starting a Connect worker, the worker must discover all of the plugin classes available on the class path and plugin.path. This is necessary for
advertising the set of supported plugins via the Connect REST API, and allowing short plugin aliases to be used in place of full class names.

Currently, that discovery consists of “plugin.path scanning” in which the worker reflectively loads every class on the class path and plugin.path. This has a
number of downsides:

Delays the startup of the worker
Slows down provisioning time of a worker in cloud environments
Increases downtime after an unexpected worker failure
Increases the duration of cluster rolls
Inflates runtime of tests which make use of connect clusters

Increases the memory footprint of a worker
Defeats lazy-loading optimizations for static resources
Increases the fixed cost of a connect worker
Reduces the memory otherwise available for plugin workloads

Increases the bug and security surface-area of a worker
Relies on an out-of-date reflections library
Runs code that would otherwise be inactive or unreachable

It is for these reasons that it is desirable to replace the current implicit declaration paradigm with an explicit declaration paradigm which is simpler to
evaluate at worker start-up.

Proposed Changes
Instead of scanning for plugin subclasses among every potential class, the worker will read from ServiceLoader manifests and module info during startup.

This mechanism is already used for the , , and plugins, ConfigProvider ConnectRestExtension ConnectorClientConfigOverridePolicy
and the loading of these plugins will continue as before. This change will apply the mechanism to the , , SinkConnector SourceConnector Converter
, , , and plugins for the first time.HeaderConverter Transformation Predicate

Public Interfaces

Plugins

This change will require connector developers to add service declarations to their plugins. This can be done in two ways:

Add one or more manifest files.ServiceLoader
Add a containing one or more directives.module-info.java provides … with

https://lists.apache.org/thread/wxh0r343w86s91py0876njzbyn5qxd8s
https://lists.apache.org/thread/7zxqlw09zk4128x0rzw35b46kz70vwzv
https://issues.apache.org/jira/browse/KAFKA-14627
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html

See Section 7.7.4 of the for detailsJava Language Specification 9
Connectors using module-info files also providing a ServiceLoader manifest will not be accessible in Java 8 environments.without

Once a service declaration is added, plugins can be released and distributed normally.

This includes plugins built and published by the Kafka project itself, which will have ServiceLoader manifest files added as part of implementing this KIP.

Connect Worker Configuration

The Connect Worker will have a new configuration: which can take one of multiple values with the following meanings:plugin.discovery

 : Corresponding to the legacy behavior, in which every class on the plugin.path is scanned on startup for plugins. In addition, a ONLY_SCAN
warning will be printed to suggest reconfiguring the worker to HYBRID_WARN. This is intended to disable the new code paths if a bug is present.

 : In addition to the legacy scanning behavior, use the new mechanism and print a warning if a class is present via scanning but not HYBRID_WARN
via ServiceLoader. If there are no discrepancies, a warning will be printed to suggest reconfiguring the worker with . This is SERVICE_LOAD
intended to inform operators that they are depending on out-of-date plugins that need to be updated.

 : Same as , except a discrepancy between the old and new mechanisms will cause a worker to fail to start up, HYBRID_FAIL HYBRID_WARN
instead of appearing at runtime as a missing plugin. This is intended for use in downstream unit and packaging tests to assert that all plugins
have been updated.

 : Only use the new ServiceLoader mechanism to load plugins. This is intended for production usage after all plugins have been SERVICE_LOAD
updated, and will be the only mode with performance benefits.

The default value for this configuration will be .HYBRID_WARN

The default value for this configuration when used in the test utility will be .EmbeddedConnectCluster HYBRID_FAIL

Plugin Path Management Script

In addition, a new script will be developed to manage the worker plugin path. For the purposes of this migration, this bin/connect-plugin-path.sh
script will execute plugin path scanning and generate shim JARs which include manifests. This can be run ahead-of-time during CI, and ServiceLoader
will allow a connect instance to use non-updated plugins with .SERVICE_LOAD

The script would take the following arguments, with the following meanings:

A positional argument which takes exactly one of the following values:sub-command
sync-manifests

For each concrete plugin implementation which is missing a ServiceLoader manifest, add a manifest file and/or entry.
For a single or file, for which a new resource file may be added to the existing archive.jar zip
For a directory with an arbitrary hierarchy of or files, for which additional directories and/or files may be jar zip
added to the existing directory.
For a directory with an arbitrary hierarchy of files, for which additional directories and/or files may be added to class
the existing directory.

The path and all subdirectories and files specified in other options must be writable.
list

Print a human-readable summary of a plugin path and the plugins contained within.
For each plugin, include:

The fully qualified class name
Plugin aliases (if available)
The version (if available)
Whether the class is discoverable via scanning
Whether the class is discoverable via ServiceLoader

The path and all subdirectories and files specified in other options must be readable.
--plugin-location <single-plugin-jar-zip-dir>

The value of this argument will be a single plugin, which can be any of the following:
a single or filejar zip
a directory with an arbitrary hierarchy of or filesjar zip
a directory with an arbitrary hierarchy of filesclass

This can be specified zero or more times.
--plugin-path <list-of-paths>

The value of this argument will follow the same semantics of the worker properties configuration.plugin.path
This will be equivalent to specifying multiple arguments, one for each top-level archive, and for each immediate --plugin-location
sub-folder of each top-level directory.
This can be specified zero or more times.

--worker-config <worker-properties-file>
From this worker properties file, the plugin.path contents on-disk will be mutated.
This will be equivalent to extracting the configuration from the worker properties and specifying .plugin.path --plugin-path
This can be specified zero or more times.

 --dry-run
Can only be specified in combination with sync-manifests.
If specified, execute all of the steps needed for the normal script execution except the final writing the changes to disk.
If not specified, the prescribed changes to the plugin path are written to disk.
If a condition which would prevent the script from completing normally is detected, the exit code of the script will be non-zero, and details
will be printed via stderr in a human-readable format.

 --keep-not-found
Can only be specified in combination with sync-manifests.
If specified, ServiceLoader manifests for classes which cannot be found will not be removed

https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf

If not specified, ServiceLoader manifests for classes which cannot be found will be removed
If not specified, any manifest files or JARs which become empty due to class name removal will be removed

The command is meant for inspecting the plugin.path before and after a migration takes place, and should expose the information that the list sync-
 command is using to perform the migration.manifests

This script would migrate the specified paths in-place, and require the input files to be writable. The arguments which do not require a worker config are
intended to provide smaller subunits of the migration for callers which want to divide the migration for error handling, modular CI builds, or reusable tooling.

If the script fails at any point with but without specified, the plugin path may be left in an indeterminate state and should sync-manifests --dry-run
not be relied upon for correctness. After a script failure, it is recommended to clear the disk contents and restore it to a known-good state. If used in CI, a
script failure can be made to cause the build to fail and be retried from the beginning.

If the script succeeds, subsequent runs on the same script directory should be idempotent. Subsequent runs on a partially changed directory should be
idempotent for the unchanged parts, and should re-migrate the changed parts.

If a plugin declares an implementation via a module-info.java file, a duplicate shim manifest will not be generated. If a plugin declares an implementation
via a module-info.java which is not loadable, the module-info.java will not be modified.

This script will only list and migrate plugins which are on the plugin.path of a Connect worker, and are loaded in isolation. This script will not list or migrate
plugins which are included on the classpath, and will assume that classpath plugins have manifests added through some other method.

Compatibility, Deprecation, and Migration Plan

Developers

At any time, including before this KIP’s vote passes or the feature is merged to the upstream, connector plugins can be updated to include ServiceLoader
manifests. These manifests will be inactive, and not affect the functionality of the Connect worker.

Once a plugin developer updates their test runtime to a version with this feature, they will have test failures to notify them if they are noncompliant. As a
temporary workaround, they can change the mode to to allow their build to complete. After they add the necessary plugin manifests, their HYBRID_WARN
tests will pass. They can leave the test configuration at , or use for more performant tests execution.HYBRID_FAIL SERVICE_LOAD

Operators

Once a connect operator updates their environment to a version with this feature, they will receive log warnings. If they notice these warnings, they will be
able to upgrade plugins to versions which alleviate the warning, or contact their vendors/plugin developers to encourage them to update their plugins. They
will be able to see the progress of this update in the startup logs, and via .bin/connect-plugin-path.sh list

While waiting for plugins to update, they can use the to migrate plugins at the point of use in their bin/connect-plugin-path.sh sync-manifests
CI, and use mode in their environment configuration.SERVICE_LOAD

After a connect operator has updated all of the plugins, they can remove from their CI, and bin/connect-plugin-path.sh sync-manifests
change the CI test configuration to to catch any regressions.HYBRID_FAIL

Deprecation

The new interfaces will ideally be released in a 3.x version of Kafka. None of the existing or new interfaces will be deprecated immediately.

In a follow-up KIP as early as 4.0, we should propose changing the configuration default to , given the ease of applying the workarounds. SERVICE_LOAD
That KIP should also decide on a deprecation schedule for the plugin path scanning behavior, and deprecate the necessary configuration values.

In a second follow-up KIP as early as 5.0, we should schedule the removal of the scanning behavior. This would mean that connector plugins built for
Kafka <3.x will not work for Kafka 5.0, or whatever version the removal takes place. Plugins with manifests will work for versions of Kafka <4.0 without
issue.

Test Plan
Existing system tests will be configured to start workers with immediately for performance reasons, and as this is now the recommended SERVICE_LOAD
running mode.

New system tests will be written to exercise each of the configuration values to confirm that a fully-migrated cluster will start up successfully in all modes.

New non-migrated, systems-test-only plugins will be added to the system test build to verify that a non-migrated plugin will have the intended effect in each
mode. These plugins will be used to test the script. As part of this, existing system-test-only plugins will be refactored bin/connect-plugin-path.sh
out of the publicly distributed build, and special cases for them removed from production code-paths.

Manual testing with several existing publicly available connectors will confirm that non-Apache plugins behave in a similar way to Apache test plugins used
in automated tests.

Rejected Alternatives
Using OSGi. In addition to the reasons noted in KIP-146, OSGi represents a much more invasive change to the Connect framework than this KIP
is targeting, and with much less clear benefit. There are also existing plugins using the ServiceLoader paradigm which would require extra
migrations.
Have the migration script copy-on-write and not mutate the on-disk worker config or plugin.path. This adds a lot of complexity to the script, and
complexity in specifying the output locations. This is easily avoided by the user copying their plugins to a writable scratch space before running
the migration script.
Discarding ClassLoaders to enable garbage collection of scanned classes after scanning is complete. This solves the ongoing memory overhead
of the scanned classes, but does not remove the initial CPU overhead of the scanning operation itself.
Adding module-info.java files for Apache plugins, in addition to, or in lieu of, ServiceLoader manifests. Because Kafka supports Java 8, we cannot
rely on Java 9+ features. And adding modules for Kafka is outside the scope of this improvement, and deserves attention in a separate KIP.

	KIP-898: Modernize Connect plugin discovery

